文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

免疫检查点抑制剂:癌症治疗的突破。

Immune checkpoint inhibitors: breakthroughs in cancer treatment.

机构信息

Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.

Department of Biology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.

出版信息

Cancer Biol Med. 2024 May 24;21(6):451-72. doi: 10.20892/j.issn.2095-3941.2024.0055.


DOI:10.20892/j.issn.2095-3941.2024.0055
PMID:38801082
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11208906/
Abstract

Over the past two decades, immunotherapies have increasingly been considered as first-line treatments for most cancers. One such treatment is immune checkpoint blockade (ICB), which has demonstrated promising results against various solid tumors in clinical trials. Monoclonal antibodies (mAbs) are currently available as immune checkpoint inhibitors (ICIs). These ICIs target specific immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1). Clinical trial results strongly support the feasibility of this immunotherapeutic approach. However, a substantial proportion of patients with cancer develop resistance or tolerance to treatment, owing to tumor immune evasion mechanisms that counteract the host immune response. Consequently, substantial research focus has been aimed at identifying additional ICIs or synergistic inhibitory receptors to enhance the effectiveness of anti-PD-1, anti-programmed cell death ligand 1 (anti-PD-L1), and anti-CTLA-4 treatments. Recently, several immune checkpoint molecular targets have been identified, such as T cell immunoreceptor with Ig and ITIM domains (TIGIT), mucin domain containing-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), V-domain immunoglobulin suppressor of T cell activation (VISTA), B and T lymphocyte attenuator (BTLA), and signal-regulatory protein α (SIRPα). Functional mAbs targeting these molecules are under development. CTLA-4, PD-1/PD-L1, and other recently discovered immune checkpoint proteins with distinct structures are at the forefront of research. This review discusses these structures, as well as clinical progress in mAbs targeting these immune checkpoint molecules and their potential applications.

摘要

在过去的二十年中,免疫疗法越来越被认为是大多数癌症的一线治疗方法。其中一种治疗方法是免疫检查点阻断(ICB),它在临床试验中对各种实体瘤显示出了有希望的结果。单克隆抗体(mAbs)目前可作为免疫检查点抑制剂(ICIs)。这些 ICIs 针对特定的免疫检查点,包括细胞毒性 T 淋巴细胞相关抗原-4(CTLA-4)和程序性细胞死亡蛋白 1(PD-1)。临床试验结果强烈支持这种免疫治疗方法的可行性。然而,相当一部分癌症患者由于肿瘤免疫逃逸机制抵消了宿主免疫反应,对治疗产生了耐药性或耐受性。因此,大量研究集中在寻找额外的 ICIs 或协同抑制性受体上,以提高抗 PD-1、抗程序性细胞死亡配体 1(抗 PD-L1)和抗 CTLA-4 治疗的效果。最近,已经鉴定出了几种免疫检查点分子靶标,例如 T 细胞免疫受体含有 Ig 和 ITIM 结构域(TIGIT)、粘蛋白结构域包含-3(TIM-3)、淋巴细胞激活基因-3(LAG-3)、V 结构域免疫球蛋白抑制 T 细胞活化(VISTA)、B 和 T 淋巴细胞衰减器(BTLA)和信号调节蛋白α(SIRPα)。针对这些分子的功能性 mAbs 正在开发中。CTLA-4、PD-1/PD-L1 和其他最近发现的具有不同结构的免疫检查点蛋白处于研究的前沿。本文讨论了这些结构,以及针对这些免疫检查点分子的 mAbs 的临床进展及其潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/077fced867dd/cbm-21-451-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/40aaf2908fc0/cbm-21-451-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/2b2fa5f1b710/cbm-21-451-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/303c69b52137/cbm-21-451-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/a919378d9328/cbm-21-451-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/e77eb4325964/cbm-21-451-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/058a84e6d362/cbm-21-451-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/077fced867dd/cbm-21-451-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/40aaf2908fc0/cbm-21-451-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/2b2fa5f1b710/cbm-21-451-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/303c69b52137/cbm-21-451-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/a919378d9328/cbm-21-451-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/e77eb4325964/cbm-21-451-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/058a84e6d362/cbm-21-451-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6985/11208906/077fced867dd/cbm-21-451-g007.jpg

相似文献

[1]
Immune checkpoint inhibitors: breakthroughs in cancer treatment.

Cancer Biol Med. 2024-5-24

[2]
Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4.

Mol Cancer. 2019-11-6

[3]
Immune checkpoints and cancer development: Therapeutic implications and future directions.

Pathol Res Pract. 2021-7

[4]
Immune checkpoint inhibitors associated cardiovascular immune-related adverse events.

Front Immunol. 2024-2-5

[5]
Clinical Insights Into Novel Immune Checkpoint Inhibitors.

Front Pharmacol. 2021-5-6

[6]
Development of Anti-human T Cell Immunoreceptor with Ig and ITIM Domains (TIGIT) Monoclonal Antibodies for Flow Cytometry.

Monoclon Antib Immunodiagn Immunother. 2021-4

[7]
Anticancer natural products targeting immune checkpoint protein network.

Semin Cancer Biol. 2022-11

[8]
Therapeutic Implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade.

Front Immunol. 2021

[9]
Immunomodulatory Precision: A Narrative Review Exploring the Critical Role of Immune Checkpoint Inhibitors in Cancer Treatment.

Int J Mol Sci. 2024-5-17

[10]
Immune Co-inhibitory Receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT in Medullary Thyroid Cancers: A Large Cohort Study.

J Clin Endocrinol Metab. 2021-1-1

引用本文的文献

[1]
Can We Use CAR-T Cells to Overcome Immunosuppression in Solid Tumours?

Biology (Basel). 2025-8-12

[2]
Identification and validation of prognostic genes associated with mitochondrial nuclear genes in gastric cancer.

Clin Exp Med. 2025-8-31

[3]
Current knowledge about immunotherapy response after liver transplantation of patients with liver cancer.

J Liver Transpl. 2025-8

[4]
CAR-T cell therapy in china: innovations, challenges, and strategic pathways.

Discov Oncol. 2025-8-22

[5]
Ras and Rab interactor 3 as a prognostic biomarker and its impact on immune cell infiltration in cancer.

Sci Rep. 2025-8-19

[6]
Adoptive cell therapy for cancer: combination strategies and biomarkers.

Front Immunol. 2025-8-1

[7]
B7-H3 in Cancer Immunotherapy-Prospects and Challenges: A Review of the Literature.

Cells. 2025-8-6

[8]
Neurotransmitters: an emerging target for therapeutic resistance to tumor immune checkpoint inhibitors.

Mol Cancer. 2025-8-11

[9]
A phase 2 study of tislelizumab combined with bevacizumab and chemotherapy as first-line treatment for persistent, recurrent, or metastatic cervical cancer.

EClinicalMedicine. 2025-6-24

[10]
Immuno-Oncology at the Crossroads: Confronting Challenges in the Quest for Effective Cancer Therapies.

Int J Mol Sci. 2025-6-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索