Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany.
Molecular Biotechnology, Department of Biosciences, Goethe-University Frankfurt, 60438, Frankfurt, Germany.
Angew Chem Int Ed Engl. 2024 Aug 12;63(33):e202406389. doi: 10.1002/anie.202406389. Epub 2024 Jul 10.
The recently identified natural product NOSO-95A from entomopathogenic Xenorhabdus bacteria, derived from a biosynthetic gene cluster (BGC) encoding a non-ribosomal peptide synthetase (NRPS), was the first member of the odilorhabdin class of antibiotics. This class exhibits broad-spectrum antibiotic activity and inspired the development of the synthetic derivative NOSO-502, which holds potential as a new clinical drug by breaking antibiotic resistance. While the mode of action of odilorhabdins was broadly investigated, their biosynthesis pathway remained poorly understood. Here we describe the heterologous production of NOSO-95A in Escherichia coli after refactoring the complete BGC. Since the production titer was low, NRPS engineering was applied to uncover the underlying biosynthetic principles. For this, modules of the odilorhabdin NRPS fused to other synthetases were co-expressed with candidate hydroxylases encoded in the BGC allowing the characterization of the biosynthesis of three unusual amino acids and leading to the identification of a prodrug-activation mechanism by deacylation. Our work demonstrates the application of NRPS engineering as a blueprint to mechanistically elucidate large or toxic NRPS and provides the basis to generate novel odilorhabdin analogues with improved properties in the future.
最近从昆虫病原 Xenorhabdus 细菌中鉴定出的天然产物 NOSO-95A,来源于一个生物合成基因簇(BGC),编码一个非核糖体肽合成酶(NRPS),是奥多利哈丁类抗生素的第一个成员。该类抗生素具有广谱抗生素活性,并激发了合成衍生物 NOSO-502 的开发,通过打破抗生素耐药性,它具有成为新型临床药物的潜力。虽然奥多利哈丁类抗生素的作用模式得到了广泛研究,但它们的生物合成途径仍知之甚少。在这里,我们描述了在重新构建完整 BGC 后,NOSO-95A 在大肠杆菌中的异源生产。由于产量低,因此应用 NRPS 工程来揭示潜在的生物合成原理。为此,将奥多利哈丁 NRPS 的模块与 BGC 中编码的候选羟化酶融合表达,允许对三种不寻常氨基酸的生物合成进行表征,并确定通过脱酰基化进行前药激活的机制。我们的工作证明了 NRPS 工程作为一种机制阐明大型或毒性 NRPS 的蓝图的应用,并为未来生成具有改进性能的新型奥多利哈丁类似物提供了基础。