College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310023, China.
College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310023, China.
J Environ Sci (China). 2024 Oct;144:199-211. doi: 10.1016/j.jes.2023.08.030. Epub 2023 Sep 6.
As a strong oxidizing agent, ozone is used in some water treatment facilities for disinfection, taste and odor control, and removal of organic micropollutants. Phenylalanine (Phe) was used as the target amino acid to comprehensively investigate variability of disinfection byproducts (DBPs) formation during chlorine disinfection and residual chlorine conditions subsequent to ozonation. The results showed that subsequent to ozonation, the typical regulated and unregulated DBPs formation potential (DBPsFP), including trichloromethane (TCM), dichloroacetonitrile (DCAN), chloral hydrate (CH), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and trichloroacetamide (TCAcAm) increased substantially, by 2.4, 3.3, 5.6, 1.2, 2.5, and 6.0 times, respectively, compared with only chlorination. Ozonation also significantly increased the DBPs yield under a 2 day simulated residual chlorine condition that mimicked the water distribution system. DBPs formations followed pseudo first order kinetics. The formation rates of DBPs in the first 6 hr were higher for TCM (0.214 hr), DCAN (0.244 hr), CH (0.105 hr), TCAcAm (0.234 hr), DCAA (0.375 hr) and TCAA (0.190 hr) than thereafter. The peak DBPsFP of TCM, DCAN, CH, TCAcAm, DCAA, and TCAA were obtained when that ozonation time was set at 5-15 min. Ozonation times > 30 min increased the mineralization of Phe and decreased the formation of DBPs upon chlorination. Increasing bromine ion (Br) concentration increased production of bromine- DBPs and decreased chlorine-DBPs formation by 59.3%-92.2% . Higher ozone dosages and slight alkaline favored to reduce DBP formation and cytotoxicity. The ozonation conditions should be optimized for all application purposes including DBPs reduction.
作为一种强氧化剂,臭氧被用于一些水处理设施中,用于消毒、控制口感和气味以及去除有机微量污染物。本研究选择苯丙氨酸(Phe)作为目标氨基酸,以全面研究氯消毒和臭氧化后余氯条件下消毒副产物(DBPs)的形成变化。结果表明,臭氧化后,典型的受管制和不受管制的 DBPs 形成潜力(DBPsFP),包括三氯甲烷(TCM)、二氯乙腈(DCAN)、水合氯醛(CH)、二氯乙酸(DCAA)、三氯乙酸(TCAA)和三氯乙酰胺(TCAcAm),分别显著增加了 2.4、3.3、5.6、1.2、2.5 和 6.0 倍,与仅氯化相比。臭氧化还显著增加了模拟水分配系统中 2 天余氯条件下的 DBPs 生成量。DBPs 的形成遵循假一级动力学。在最初 6 小时内,TCM(0.214 hr)、DCAN(0.244 hr)、CH(0.105 hr)、TCAcAm(0.234 hr)、DCAA(0.375 hr)和 TCAA(0.190 hr)的形成速率更高。当臭氧化时间设定为 5-15 分钟时,TCM、DCAN、CH、TCAcAm、DCAA 和 TCAA 的峰值 DBPsFP 最高。臭氧化时间>30 分钟会增加苯丙氨酸的矿化度,减少氯化过程中 DBPs 的形成。增加溴离子(Br)浓度会增加溴代 DBPs 的生成,同时减少 59.3%-92.2%的氯代 DBPs 形成。较高的臭氧剂量和轻微的碱性有利于减少 DBP 的形成和细胞毒性。臭氧化条件应根据所有应用目的进行优化,包括减少 DBP。