Suppr超能文献

APF2:一种改进的药物基因组变异效应预测集成方法。

APF2: an improved ensemble method for pharmacogenomic variant effect prediction.

机构信息

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden.

出版信息

Pharmacogenomics J. 2024 May 27;24(3):17. doi: 10.1038/s41397-024-00338-x.

Abstract

Lack of efficacy or adverse drug response are common phenomena in pharmacological therapy causing considerable morbidity and mortality. It is estimated that 20-30% of this variability in drug response stems from variations in genes encoding drug targets or factors involved in drug disposition. Leveraging such pharmacogenomic information for the preemptive identification of patients who would benefit from dose adjustments or alternative medications thus constitutes an important frontier of precision medicine. Computational methods can be used to predict the functional effects of variant of unknown significance. However, their performance on pharmacogenomic variant data has been lackluster. To overcome this limitation, we previously developed an ensemble classifier, termed APF, specifically designed for pharmacogenomic variant prediction. Here, we aimed to further improve predictions by leveraging recent key advances in the prediction of protein folding based on deep neural networks. Benchmarking of 28 variant effect predictors on 530 pharmacogenetic missense variants revealed that structural predictions using AlphaMissense were most specific, whereas APF exhibited the most balanced performance. We then developed a new tool, APF2, by optimizing algorithm parametrization of the top performing algorithms for pharmacogenomic variations and aggregating their predictions into a unified ensemble score. Importantly, APF2 provides quantitative variant effect estimates that correlate well with experimental results (R = 0.91, p = 0.003) and predicts the functional impact of pharmacogenomic variants with higher accuracy than previous methods, particularly for clinically relevant variations with actionable pharmacogenomic guidelines. We furthermore demonstrate better performance (92% accuracy) on an independent test set of 146 variants across 61 pharmacogenes not used for model training or validation. Application of APF2 to population-scale sequencing data from over 800,000 individuals revealed drastic ethnogeographic differences with important implications for pharmacotherapy. We thus think that APF2 holds the potential to improve the translation of genetic information into pharmacogenetic recommendations, thereby facilitating the use of Next-Generation Sequencing data for stratified medicine.

摘要

疗效不佳或药物不良反应是药理学治疗中的常见现象,会导致相当大的发病率和死亡率。据估计,药物反应的这种可变性的 20-30%源自编码药物靶点或药物处置相关因素的基因变异。利用这种药物基因组学信息,预先识别那些受益于剂量调整或替代药物的患者,是精准医学的一个重要前沿。计算方法可用于预测未知意义变异的功能效应。然而,它们在药物基因组学变异数据上的性能一直不尽如人意。为了克服这一限制,我们之前开发了一种名为 APF 的集成分类器,专门用于药物基因组学变异预测。在这里,我们旨在通过利用基于深度神经网络的蛋白质折叠预测的最新关键进展来进一步提高预测能力。在 530 个药物遗传学错义变异上对 28 种变异效应预测器进行基准测试表明,使用 AlphaMissense 进行结构预测的特异性最高,而 APF 则表现出最平衡的性能。然后,我们通过优化针对药物基因组学变异的表现最佳算法的参数化,并将它们的预测汇总到一个统一的集成得分中,开发了一种新工具 APF2。重要的是,APF2 提供了与实验结果高度相关的定量变异效应估计(R=0.91,p=0.003),并且比以前的方法更准确地预测药物基因组学变异的功能影响,特别是对于具有可操作药物基因组学指南的临床相关变异。我们还在一个独立的 146 个变体测试集上进行了测试,该测试集跨越了 61 个未用于模型训练或验证的药物基因,证明了该模型的性能更好(准确率为 92%)。APF2 应用于超过 80 万人的人群规模测序数据揭示了剧烈的种族地理差异,这对药物治疗具有重要意义。因此,我们认为 APF2 有可能改善遗传信息转化为药物基因组学建议的效果,从而促进将下一代测序数据用于分层医学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/11129946/57d0670ade72/41397_2024_338_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验