University of Jeddah, College of Science and Arts at Khulis, Department of Biology, Jeddah, Saudi Arabia.
Physiotherapy Department, College of Applied Health Sciences, Jerash University, Jerash, Jordan.
Sci Rep. 2024 May 27;14(1):12076. doi: 10.1038/s41598-024-62773-x.
Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset.
宫颈癌(CC)是女性第四大常见癌症,发生在子宫颈。CC 由人乳头瘤病毒(HPV)感染引起,通过在女性早期接种疫苗可以消除。然而,中低收入国家的医疗设施有限,这是一个重大挑战。如果在早期发现 CC,可以提高生存率并成功治疗。目前的技术进步允许进行具有成本效益、更敏感和快速的 CC 筛查和治疗措施。深度学习(DL)技术广泛应用于 CC 的自动检测。DL 技术和架构用于检测 CC 并提供更高的检测性能。本研究提出了一种使用阿基米德优化算法与迁移学习(CPLDC-AOATL)的增强型宫颈癌前病变检测与分类的设计。CPLDC-AOATL 算法旨在使用医学图像诊断宫颈癌。在初步阶段,CPLDC-AOATL 技术涉及双边滤波(BF)技术来消除输入图像中的噪声。此外,CPLDC-AOATL 技术还应用了 Inception-ResNetv2 模型进行特征提取过程,使用 AOA 选择超参数。CPLDC-AOATL 技术涉及双向长短期记忆(BiLSTM)模型用于癌症检测过程。CPLDC-AOATL 技术的实验结果强调了在基准数据集下,该技术的准确率达到了 99.53%,优于其他现有方法。