Suppr超能文献

基于机器学习的慢性乙型肝炎患者肝纤维化血清标志物模型分析。

A machine learning-based model analysis for serum markers of liver fibrosis in chronic hepatitis B patients.

机构信息

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.

Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.

出版信息

Sci Rep. 2024 May 27;14(1):12081. doi: 10.1038/s41598-024-63095-8.

Abstract

Early assessment and accurate staging of liver fibrosis may be of great help for clinical diagnosis and treatment in patients with chronic hepatitis B (CHB). We aimed to identify serum markers and construct a machine learning (ML) model to reliably predict the stage of fibrosis in CHB patients. The clinical data of 618 CHB patients between February 2017 and September 2021 from Zhejiang Provincial People's Hospital were retrospectively analyzed, and these data as a training cohort to build the model. Six ML models were constructed based on logistic regression, support vector machine, Bayes, K-nearest neighbor, decision tree (DT) and random forest by using the maximum relevance minimum redundancy (mRMR) and gradient boosting decision tree (GBDT) dimensionality reduction selected features on the training cohort. Then, the resampling method was used to select the optimal ML model. In addition, a total of 571 patients from another hospital were used as an external validation cohort to verify the performance of the model. The DT model constructed based on five serological biomarkers included HBV-DNA, platelet, thrombin time, international normalized ratio and albumin, with the area under curve (AUC) values of the DT model for assessment of liver fibrosis stages (F0-1, F2, F3 and F4) in the training cohort were 0.898, 0.891, 0.907 and 0.944, respectively. The AUC values of the DT model for assessment of liver fibrosis stages (F0-1, F2, F3 and F4) in the external validation cohort were 0.906, 0.876, 0.931 and 0.933, respectively. The simulated risk classification based on the cutoff value showed that the classification performance of the DT model in distinguishing hepatic fibrosis stages can be accurately matched with pathological diagnosis results. ML model of five serum markers allows for accurate diagnosis of hepatic fibrosis stages, and beneficial for the clinical monitoring and treatment of CHB patients.

摘要

早期评估和准确分期肝纤维化对于慢性乙型肝炎(CHB)患者的临床诊断和治疗可能有很大帮助。我们旨在确定血清标志物并构建机器学习(ML)模型,以可靠地预测 CHB 患者的纤维化分期。回顾性分析了 2017 年 2 月至 2021 年 9 月浙江省人民医院 618 例 CHB 患者的临床资料,将这些数据作为训练队列来构建模型。基于逻辑回归、支持向量机、贝叶斯、K-最近邻、决策树(DT)和随机森林,使用最大相关性最小冗余(mRMR)和梯度提升决策树(GBDT)降维方法对训练队列中的特征进行选择,构建了六个 ML 模型。然后,使用重采样方法选择最佳 ML 模型。此外,从另一所医院共选择了 571 例患者作为外部验证队列,以验证模型的性能。基于五个血清学标志物构建的 DT 模型包括 HBV-DNA、血小板、凝血酶时间、国际标准化比值和白蛋白,在训练队列中,DT 模型评估肝纤维化分期(F0-1、F2、F3 和 F4)的曲线下面积(AUC)值分别为 0.898、0.891、0.907 和 0.944。在外部验证队列中,DT 模型评估肝纤维化分期(F0-1、F2、F3 和 F4)的 AUC 值分别为 0.906、0.876、0.931 和 0.933。基于截断值的模拟风险分类表明,DT 模型在区分肝纤维化分期方面的分类性能可以与病理诊断结果准确匹配。基于五个血清标志物的 ML 模型可准确诊断肝纤维化分期,有助于 CHB 患者的临床监测和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b11/11130122/83666abcf49c/41598_2024_63095_Fig1_HTML.jpg

相似文献

2
Serum N-glycan markers for diagnosing liver fibrosis induced by hepatitis B virus.
World J Gastroenterol. 2020 Mar 14;26(10):1067-1079. doi: 10.3748/wjg.v26.i10.1067.
3
Globulin-platelet model predicts minimal fibrosis and cirrhosis in chronic hepatitis B virus infected patients.
World J Gastroenterol. 2012 Jun 14;18(22):2784-92. doi: 10.3748/wjg.v18.i22.2784.
4
A proposed predictive model for advanced fibrosis in patients with chronic hepatitis B and its validation.
Medicine (Baltimore). 2016 Aug;95(35):e4679. doi: 10.1097/MD.0000000000004679.
7
The validity of serum markers for fibrosis staging in chronic hepatitis B and C.
J Viral Hepat. 2014 Dec;21(12):930-7. doi: 10.1111/jvh.12224. Epub 2014 Jan 29.
8
Serum Levels of Hepatitis B Surface Antigen Predict Severity of Fibrosis in Patients With E Antigen-Positive Chronic Hepatitis B.
Clin Gastroenterol Hepatol. 2015 Aug;13(8):1532-9.e1. doi: 10.1016/j.cgh.2014.12.017. Epub 2014 Dec 24.
9
The value of platelet count in evaluating the degree of liver fibrosis in patients with chronic hepatitis B.
J Clin Lab Anal. 2020 Jul;34(7):e23270. doi: 10.1002/jcla.23270. Epub 2020 May 4.
10
Assessing significant fibrosis using imaging-based elastography in chronic hepatitis B patients: Pilot study.
World J Gastroenterol. 2019 Jul 7;25(25):3256-3267. doi: 10.3748/wjg.v25.i25.3256.

引用本文的文献

本文引用的文献

1
Principles, Interpretation, and Evidence-Based Role of Viscoelastic Point-of-Care Coagulation Assays in Cirrhosis and Liver Failure.
J Clin Exp Hepatol. 2022 Mar-Apr;12(2):533-543. doi: 10.1016/j.jceh.2021.05.001. Epub 2021 May 8.
2
Assessment of laboratory tests and intraoperative bleeding in patients with liver cirrhosis undergoing tooth extractions.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2022 Feb;133(2):148-155. doi: 10.1016/j.oooo.2021.05.010. Epub 2021 May 31.
5
Non-invasive assessment of liver fibrosis and prognosis: an update on serum and elastography markers.
Expert Rev Gastroenterol Hepatol. 2019 Apr;13(4):361-374. doi: 10.1080/17474124.2019.1579641. Epub 2019 Feb 20.
6
Radiomics Analysis of Gadoxetic Acid-enhanced MRI for Staging Liver Fibrosis.
Radiology. 2019 Feb;290(2):380-387. doi: 10.1148/radiol.2018181197. Epub 2018 Dec 4.
7
Chronic hepatitis B virus infection.
Lancet. 2018 Nov 24;392(10161):2313-2324. doi: 10.1016/S0140-6736(18)31865-8.
9
Evaluation of hepatic fibrosis: a review from the society of abdominal radiology disease focus panel.
Abdom Radiol (NY). 2017 Aug;42(8):2037-2053. doi: 10.1007/s00261-017-1211-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验