Suppr超能文献

机器学习算法在自杀风险预测中的作用:临床研究的系统评价-荟萃分析。

Role of machine learning algorithms in suicide risk prediction: a systematic review-meta analysis of clinical studies.

机构信息

School of Engineering and the Built Environment, Anglia Ruskin University, Chelmsford, UK.

Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.

出版信息

BMC Med Inform Decis Mak. 2024 May 27;24(1):138. doi: 10.1186/s12911-024-02524-0.

Abstract

OBJECTIVE

Suicide is a complex and multifactorial public health problem. Understanding and addressing the various factors associated with suicide is crucial for prevention and intervention efforts. Machine learning (ML) could enhance the prediction of suicide attempts.

METHOD

A systematic review was performed using PubMed, Scopus, Web of Science and SID databases. We aim to evaluate the performance of ML algorithms and summarize their effects, gather relevant and reliable information to synthesize existing evidence, identify knowledge gaps, and provide a comprehensive list of the suicide risk factors using mixed method approach.

RESULTS

Forty-one studies published between 2011 and 2022, which matched inclusion criteria, were chosen as suitable. We included studies aimed at predicting the suicide risk by machine learning algorithms except natural language processing (NLP) and image processing. The neural network (NN) algorithm exhibited the lowest accuracy at 0.70, whereas the random forest demonstrated the highest accuracy, reaching 0.94. The study assessed the COX and random forest models and observed a minimum area under the curve (AUC) value of 0.54. In contrast, the XGBoost classifier yielded the highest AUC value, reaching 0.97. These specific AUC values emphasize the algorithm-specific performance in capturing the trade-off between sensitivity and specificity for suicide risk prediction. Furthermore, our investigation identified several common suicide risk factors, including age, gender, substance abuse, depression, anxiety, alcohol consumption, marital status, income, education, and occupation. This comprehensive analysis contributes valuable insights into the multifaceted nature of suicide risk, providing a foundation for targeted preventive strategies and intervention efforts.

CONCLUSIONS

The effectiveness of ML algorithms and their application in predicting suicide risk has been controversial. There is a need for more studies on these algorithms in clinical settings, and the related ethical concerns require further clarification.

摘要

目的

自杀是一个复杂的多因素公共卫生问题。了解和处理与自杀相关的各种因素对于预防和干预工作至关重要。机器学习(ML)可以增强自杀企图的预测能力。

方法

使用 PubMed、Scopus、Web of Science 和 SID 数据库进行系统评价。我们旨在评估 ML 算法的性能并总结其效果,收集相关和可靠的信息以综合现有证据,确定知识空白,并使用混合方法从整体上列出自杀风险因素。

结果

选择了 2011 年至 2022 年期间发表的 41 篇符合纳入标准的研究。我们纳入了旨在通过机器学习算法预测自杀风险的研究,除了自然语言处理(NLP)和图像处理。神经网络(NN)算法的准确性最低,为 0.70,而随机森林的准确性最高,达到 0.94。该研究评估了 COX 和随机森林模型,观察到曲线下面积(AUC)的最小值为 0.54。相比之下,XGBoost 分类器产生的 AUC 值最高,达到 0.97。这些特定的 AUC 值强调了算法在捕捉自杀风险预测中灵敏度和特异性之间权衡的特定性能。此外,我们的研究确定了几个常见的自杀风险因素,包括年龄、性别、药物滥用、抑郁、焦虑、饮酒、婚姻状况、收入、教育和职业。这种综合分析为自杀风险的多面性提供了有价值的见解,为有针对性的预防策略和干预措施奠定了基础。

结论

ML 算法的有效性及其在预测自杀风险中的应用一直存在争议。需要更多关于这些算法在临床环境中的研究,并且相关的伦理问题需要进一步澄清。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1d4/11129374/eb5f51cc7bf8/12911_2024_2524_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验