Suppr超能文献

AI - Y:全球背景下人口伦理学的人工智能清单

AI-Y: An AI Checklist for Population Ethics Across the Global Context.

作者信息

Hswen Yulin, Naslund John A, Hurley Margaret, Ragon Bart, Handley Margaret A, Fang Fang, Haroz Emily E, Nakatumba-Nabende Joyce, van Heerden Alastair, Nsoesie Elaine O

机构信息

Department of Epidemiology and Biostatistics and Medicine, University of California, San Francisco, USA.

Department of Global Health and Social Medicine, Harvard Medical School, Boston, USA.

出版信息

Curr Epidemiol Rep. 2025;12(1):13. doi: 10.1007/s40471-025-00362-w. Epub 2025 Jul 9.

Abstract

PURPOSE OF REVIEW

The goal of this narrative review is to introduce and apply , a structured ethical framework created to evaluate the development and deployment of artificial intelligence (AI) technologies in public health. The review addresses key questions: How can AI be ethically assessed across global healthcare contexts and what principles are needed to ensure contextually appropriate AI use in population health.

RECENT FINDINGS

Recent research highlights a significant disconnect between AI development and ethical implementation, especially in low-resource settings. Studies reveal issues such as homogeneity in the training data, and limited accessibility. Through six global case studies-spanning dementia care in Sweden, environmental forecasting in Europe, suicide prevention in Native American communities, schizophrenia care in India and the U.S., and cervical cancer and tuberculosis diagnosis in Low- and Middle-Income Countries-researchers demonstrate AI's promise in enhancing preparedness diagnosis, screening, and care delivery while also underscoring ethical gaps in accountability, and governance.

SUMMARY

Our examination using the AI-Y Checklist found that ethical blind spots are widespread in the development and deployment of AI tools for population health-particularly in areas of model generalizability, accountability, and transparency of AI decision-making. Although AI demonstrates strong potential to enhance disease detection, resource allocation, and preventive care across diverse global settings, most systems evaluated in our six case studies did not meet key ethical criteria such as access, and localized validation and development. The major takeaway is that technical excellence alone is insufficient; ethical alignment is critical to the responsible implementation of AI in public health. The AI-Y Checklist provides a scalable framework to identify risks, guide ethical decision-making, and foster global accountability. For future research, this framework enables standardized evaluation of AI systems, encourages community co-design practices, and supports the creation of policy and governance structures that ensure AI technologies advance health ethics.

摘要

综述目的

本叙述性综述的目的是介绍并应用一种结构化的伦理框架,该框架旨在评估人工智能(AI)技术在公共卫生领域的开发与应用。本综述探讨了关键问题:如何在全球医疗背景下对人工智能进行伦理评估,以及需要哪些原则来确保在人群健康中合理使用符合具体情况的人工智能。

最新发现

近期研究凸显了人工智能开发与伦理实施之间存在重大脱节,尤其是在资源匮乏的环境中。研究揭示了诸如训练数据同质化以及可及性有限等问题。通过六个全球案例研究——涵盖瑞典的痴呆症护理、欧洲的环境预测、美国原住民社区的自杀预防、印度和美国的精神分裂症护理,以及低收入和中等收入国家的宫颈癌和结核病诊断——研究人员展示了人工智能在加强准备诊断、筛查和护理服务方面的前景,同时也强调了在问责制和治理方面的伦理差距。

总结

我们使用AI - Y检查表进行的审查发现,在用于人群健康的人工智能工具的开发和应用中,伦理盲点普遍存在——特别是在模型通用性、问责制以及人工智能决策透明度等方面。尽管人工智能在加强全球不同环境下的疾病检测、资源分配和预防保健方面显示出强大潜力,但我们六个案例研究中评估的大多数系统均未达到关键的伦理标准,如可及性、本地化验证和开发。主要结论是,仅有技术卓越是不够的;伦理契合对于在公共卫生中负责任地应用人工智能至关重要。AI - Y检查表提供了一个可扩展的框架,用于识别风险、指导伦理决策并促进全球问责制。对于未来研究而言,该框架能够对人工智能系统进行标准化评估,鼓励社区共同设计实践,并支持创建确保人工智能技术推进健康伦理的政策和治理结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/761c/12241292/62c70d4e664d/40471_2025_362_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验