Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751030, India.
Metallurgical, Materials and Biomedical Engineering Department, the University of Texas at El Paso, El Paso, TX, 79968, USA.
Int J Nanomedicine. 2024 May 21;19:4515-4531. doi: 10.2147/IJN.S464905. eCollection 2024.
There is an ongoing need for improved healing response and expedited osseointegration on the Ti implants in acetabular fracture sites. To achieve adequate bonding and mechanical stability between the implant surface and the acetabular fracture, a new coating technology must be developed to promote bone integration and prevent bacterial growth.
A cylindrical Ti substrate mounted on a rotating specimen holder was used to implant Ca, P, and Sr ions at energies of 100 KeV, 75 KeV and 180 KeV, respectively, using a low-energy accelerator to synthesize strontium-substituted hydroxyapatite at varying conditions. Ag ions of energy 100 KeV were subsequently implanted on the as-formed surface at the near-surface region to provide anti-bacterial properties to the as-formed specimen.
The properties of the as-formed ion-implanted specimen were compared with the SrHA-Ag synthesized specimens by cathodic deposition and low-temperature high-speed collision technique. The adhesion strength of the ion-implanted specimen was 43 ± 2.3 MPa, which is well above the ASTM standard for Ca-P coating on Ti. Live/dead cell analysis showed higher osteoblast activity on the ion-implanted specimen than the other two. Ag in the SrHA implanted Ti by ion implantation process showed superior antibacterial activity.
In the ion implantation technique, nano-topography patterned surfaces are not concealed after implantation, and their efficacy in interacting with the osteoblasts is retained. Although all three studies examined the antibacterial effects of Ag ions and the ability to promote bone tissue formation by MC3T3-E1 cells on SrHA-Ag/Ti surfaces, ion implantation techniques demonstrated superior ability. The synthesized specimen can be used as an effective implant in acetabular fracture sites based on their mechanical and biological properties.
在髋臼骨折部位的 Ti 植入物上,需要不断提高愈合反应和加快骨整合。为了在植入物表面和髋臼骨折之间实现足够的结合和机械稳定性,必须开发新的涂层技术来促进骨整合并防止细菌生长。
使用圆柱形 Ti 基底,安装在旋转样品架上,使用低能加速器分别以 100keV、75keV 和 180keV 的能量植入 Ca、P 和 Sr 离子,以不同条件合成锶取代的羟基磷灰石。随后,在形成的表面的近表面区域植入能量为 100keV 的 Ag 离子,为形成的样品提供抗菌性能。
将形成的离子注入样品的性能与通过阴极沉积和低温高速碰撞技术合成的 SrHA-Ag 合成样品进行了比较。离子注入样品的附着强度为 43±2.3MPa,远高于 Ti 上 Ca-P 涂层的 ASTM 标准。活/死细胞分析表明,离子注入样品上的成骨细胞活性高于其他两种。离子注入过程中在 SrHA 中植入的 Ag 表现出优异的抗菌活性。
在离子注入技术中,纳米形貌图案化表面在注入后不会被隐藏,并且它们与成骨细胞相互作用的效果得以保留。尽管所有三项研究都检查了 Ag 离子的抗菌效果以及 MC3T3-E1 细胞对 SrHA-Ag/Ti 表面促进骨组织形成的能力,但离子注入技术表现出了更好的能力。基于其机械和生物学特性,合成的样品可作为髋臼骨折部位的有效植入物。