Suppr超能文献

利用激光雷达和结构模型推进精细枝生物质估算。

Advancing fine branch biomass estimation with lidar and structural models.

机构信息

CIRAD, UMR AMAP, F-34398 Montpellier, France.

AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.

出版信息

Ann Bot. 2024 Aug 22;134(3):455-466. doi: 10.1093/aob/mcae083.

Abstract

BACKGROUND AND AIMS

Lidar is a promising tool for fast and accurate measurements of trees. There are several approaches to estimate above-ground woody biomass using lidar point clouds. One of the most widely used methods involves fitting geometric primitives (e.g. cylinders) to the point cloud, thereby reconstructing both the geometry and topology of the tree. However, current algorithms are not suited for accurate estimation of the volume of finer branches, because of the unreliable point dispersions from, for example, beam footprint compared to the structure diameter.

METHOD

We propose a new method that couples point cloud-based skeletonization and multi-linear statistical modelling based on structural data to make a model (structural model) that accurately estimates the above-ground woody biomass of trees from high-quality lidar point clouds, including finer branches. The structural model was tested at segment, axis and branch level, and compared to a cylinder fitting algorithm and to the pipe model theory.

KEY RESULTS

The model accurately predicted the biomass with 1.6 % normalized root mean square error (nRMSE) at the segment scale from a k-fold cross-validation. It also gave satisfactory results when scaled up to the branch level with a significantly lower error (13 % nRMSE) and bias (-5 %) compared to conventional cylinder fitting to the point cloud (nRMSE: 92 %, bias: 82 %), or using the pipe model theory (nRMSE: 31 %, bias: -27 %). The model was then applied to the whole-tree scale and showed that the sampled trees had more than 1.7 km of structures on average and that 96 % of that length was coming from the twigs (i.e. <5 cm diameter). Our results showed that neglecting twigs can lead to a significant underestimation of tree above-ground woody biomass (-21 %).

CONCLUSIONS

The structural model approach is an effective method that allows a more accurate estimation of the volumes of smaller branches from lidar point clouds. This method is versatile but requires manual measurements on branches for calibration. Nevertheless, once the model is calibrated, it can provide unbiased and large-scale estimations of tree structure volumes, making it an excellent choice for accurate 3D reconstruction of trees and estimating standing biomass.

摘要

背景与目的

激光雷达是一种快速、准确测量树木的有前途的工具。有几种方法可以使用激光雷达点云估算地上木质生物量。最广泛使用的方法之一涉及到将几何基元(例如圆柱体)拟合到点云中,从而重建树的几何形状和拓扑结构。然而,由于例如与结构直径相比,来自光束足迹的点散布不可靠,当前的算法不适合更精细的分支体积的准确估计。

方法

我们提出了一种新方法,该方法结合了基于点云的骨架化和基于结构数据的多线性统计建模,以制作一个模型(结构模型),该模型可以从高质量的激光雷达点云中准确估算树木的地上木质生物量,包括更细的分支。在分段、轴和分支级别上测试了结构模型,并将其与圆柱拟合算法和管模型理论进行了比较。

主要结果

该模型在分段尺度上通过 k 折交叉验证以 1.6%的归一化均方根误差(nRMSE)准确预测了生物量。当扩展到分支尺度时,它也给出了令人满意的结果,与常规的将点云拟合到圆柱(nRMSE:92%,偏差:82%)或使用管模型理论(nRMSE:31%,偏差:-27%)相比,误差(13%nRMSE)和偏差(-5%)显著降低。然后,该模型应用于整树尺度,结果表明,采样的树木平均有超过 1.7 公里的结构,其中 96%的长度来自细枝(即<5 厘米直径)。我们的结果表明,忽略细枝会导致树木地上木质生物量的显著低估(-21%)。

结论

结构模型方法是一种有效的方法,可以从激光雷达点云中更准确地估计较小分支的体积。该方法用途广泛,但需要对分支进行手动测量以进行校准。然而,一旦模型校准,它就可以提供无偏且大规模的树木结构体积估计,因此是准确的 3D 树木重建和估计立木生物量的理想选择。

相似文献

本文引用的文献

7
A multiscale model of plant topological structures.植物拓扑结构的多尺度模型。
J Theor Biol. 1998 Mar 7;191(1):1-46. doi: 10.1006/jtbi.1997.0561.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验