Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China.
Institute of Dataspace, Hefei Comprehensive National Science Center, Hefei 230088, China.
Curr Opin Neurol. 2024 Aug 1;37(4):369-380. doi: 10.1097/WCO.0000000000001280. Epub 2024 May 27.
Human brain parcellation based on functional magnetic resonance imaging (fMRI) plays an essential role in neuroscience research. By segmenting vast and intricate fMRI data into functionally similar units, researchers can better decipher the brain's structure in both healthy and diseased states. This article reviews current methodologies and ideas in this field, while also outlining the obstacles and directions for future research.
Traditional brain parcellation techniques, which often rely on cytoarchitectonic criteria, overlook the functional and temporal information accessible through fMRI. The adoption of machine learning techniques, notably deep learning, offers the potential to harness both spatial and temporal information for more nuanced brain segmentation. However, the search for a one-size-fits-all solution to brain segmentation is impractical, with the choice between group-level or individual-level models and the intended downstream analysis influencing the optimal parcellation strategy. Additionally, evaluating these models is complicated by our incomplete understanding of brain function and the absence of a definitive "ground truth".
While recent methodological advancements have significantly enhanced our grasp of the brain's spatial and temporal dynamics, challenges persist in advancing fMRI-based spatio-temporal representations. Future efforts will likely focus on refining model evaluation and selection as well as developing methods that offer clear interpretability for clinical usage, thereby facilitating further breakthroughs in our comprehension of the brain.
目的综述:基于功能磁共振成像(fMRI)的人脑分割在神经科学研究中起着至关重要的作用。通过将庞大而复杂的 fMRI 数据分割成功能相似的单元,研究人员可以更好地揭示健康和疾病状态下大脑的结构。本文回顾了该领域当前的方法和思路,同时概述了未来研究的障碍和方向。
最新发现:传统的脑分割技术,通常依赖于细胞构筑学标准,忽略了通过 fMRI 获得的功能和时间信息。机器学习技术的采用,尤其是深度学习,为更细致的大脑分割提供了利用空间和时间信息的潜力。然而,寻找一种适用于所有人的大脑分割解决方案是不切实际的,需要在群体水平或个体水平模型之间进行选择,以及考虑预期的下游分析,这都会影响最优的分割策略。此外,由于我们对大脑功能的理解不完整,以及缺乏明确的“基准真相”,评估这些模型变得复杂。
总结:尽管最近的方法学进展极大地增强了我们对大脑空间和时间动态的理解,但在推进基于 fMRI 的时空表示方面仍然存在挑战。未来的研究可能集中在改进模型评估和选择,以及开发为临床应用提供清晰可解释性的方法,从而促进我们对大脑理解的进一步突破。