Li Zheng, Xu Ning, Zhang Yujing, Liu Wen, Wang Jiaqian, Ma Meiliang, Fu Xiaolan, Hu Xiaojuan, Xu Wenwu, Han Zhong-Kang
Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
J Phys Chem Lett. 2024 Jun 6;15(22):5868-5874. doi: 10.1021/acs.jpclett.4c00889. Epub 2024 May 28.
Understanding the structures of oxygen vacancies in bulk ceria is crucial as they significantly impact the material's catalytic and electronic properties. The complex interaction between oxygen vacancies and Ce ions presents challenges in characterizing ceria's defect chemistry. We introduced a machine learning-assisted cluster-expansion model to predict the energetics of defective configurations accurately within bulk ceria. This model effectively samples configurational spaces, detailing oxygen vacancy structures across different temperatures and concentrations. At lower temperatures, vacancies tend to cluster, mediated by Ce ions and electrostatic repulsion, while at higher temperatures, they distribute uniformly due to configurational entropy. Our analysis also reveals a correlation between thermodynamic stability and the band gap between occupied O 2 and unoccupied Ce 4 orbitals, with wider band gaps indicating higher stability. This work enhances our understanding of defect chemistry in oxide materials and lays the groundwork for further research into how these structural properties affect ceria's performance.
了解块状氧化铈中氧空位的结构至关重要,因为它们会显著影响材料的催化和电子性能。氧空位与铈离子之间的复杂相互作用给表征氧化铈的缺陷化学带来了挑战。我们引入了一种机器学习辅助的团簇展开模型,以准确预测块状氧化铈内缺陷构型的能量。该模型有效地对构型空间进行采样,详细描述了不同温度和浓度下的氧空位结构。在较低温度下,空位倾向于聚集,由铈离子和静电排斥介导,而在较高温度下,由于构型熵,它们均匀分布。我们的分析还揭示了热力学稳定性与占据的O 2和未占据的Ce 4轨道之间的带隙之间的相关性,带隙越宽表明稳定性越高。这项工作增进了我们对氧化物材料中缺陷化学的理解,并为进一步研究这些结构特性如何影响氧化铈的性能奠定了基础。