Suppr超能文献

揭示块状二氧化铈中氧空位的结构及其形成背后的物理机制。

Unveiling the Structure of Oxygen Vacancies in Bulk Ceria and the Physical Mechanisms behind Their Formation.

作者信息

Li Zheng, Xu Ning, Zhang Yujing, Liu Wen, Wang Jiaqian, Ma Meiliang, Fu Xiaolan, Hu Xiaojuan, Xu Wenwu, Han Zhong-Kang

机构信息

Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.

School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.

出版信息

J Phys Chem Lett. 2024 Jun 6;15(22):5868-5874. doi: 10.1021/acs.jpclett.4c00889. Epub 2024 May 28.

Abstract

Understanding the structures of oxygen vacancies in bulk ceria is crucial as they significantly impact the material's catalytic and electronic properties. The complex interaction between oxygen vacancies and Ce ions presents challenges in characterizing ceria's defect chemistry. We introduced a machine learning-assisted cluster-expansion model to predict the energetics of defective configurations accurately within bulk ceria. This model effectively samples configurational spaces, detailing oxygen vacancy structures across different temperatures and concentrations. At lower temperatures, vacancies tend to cluster, mediated by Ce ions and electrostatic repulsion, while at higher temperatures, they distribute uniformly due to configurational entropy. Our analysis also reveals a correlation between thermodynamic stability and the band gap between occupied O 2 and unoccupied Ce 4 orbitals, with wider band gaps indicating higher stability. This work enhances our understanding of defect chemistry in oxide materials and lays the groundwork for further research into how these structural properties affect ceria's performance.

摘要

了解块状氧化铈中氧空位的结构至关重要,因为它们会显著影响材料的催化和电子性能。氧空位与铈离子之间的复杂相互作用给表征氧化铈的缺陷化学带来了挑战。我们引入了一种机器学习辅助的团簇展开模型,以准确预测块状氧化铈内缺陷构型的能量。该模型有效地对构型空间进行采样,详细描述了不同温度和浓度下的氧空位结构。在较低温度下,空位倾向于聚集,由铈离子和静电排斥介导,而在较高温度下,由于构型熵,它们均匀分布。我们的分析还揭示了热力学稳定性与占据的O 2和未占据的Ce 4轨道之间的带隙之间的相关性,带隙越宽表明稳定性越高。这项工作增进了我们对氧化物材料中缺陷化学的理解,并为进一步研究这些结构特性如何影响氧化铈的性能奠定了基础。

相似文献

1
Unveiling the Structure of Oxygen Vacancies in Bulk Ceria and the Physical Mechanisms behind Their Formation.
J Phys Chem Lett. 2024 Jun 6;15(22):5868-5874. doi: 10.1021/acs.jpclett.4c00889. Epub 2024 May 28.
3
The Structure of Oxygen Vacancies in the Near-Surface of Reduced CeO (111) Under Strain.
Front Chem. 2019 Jun 18;7:436. doi: 10.3389/fchem.2019.00436. eCollection 2019.
4
Giant onsite electronic entropy enhances the performance of ceria for water splitting.
Nat Commun. 2017 Aug 18;8(1):285. doi: 10.1038/s41467-017-00381-2.
5
Probing the 4f states of ceria by tunneling spectroscopy.
Phys Chem Chem Phys. 2011 Jul 21;13(27):12646-51. doi: 10.1039/c1cp21113g. Epub 2011 Jun 14.
6
Room-Temperature Magnetism of Ceria Nanocubes by Inductively Transferring Electrons to Ce Atoms from Nearby Oxygen Vacancy.
Nanomicro Lett. 2016;8(1):13-19. doi: 10.1007/s40820-015-0056-2. Epub 2015 Aug 19.
7
On the interaction of Mg with the (111) and (110) surfaces of ceria.
Phys Chem Chem Phys. 2012 Jan 21;14(3):1293-301. doi: 10.1039/c1cp22863c. Epub 2011 Dec 1.
9
Impact of Atomic Defects on Ceria Surfaces on Chemical Mechanical Polishing of Silica Glass Surfaces.
Langmuir. 2024 Apr 2;40(13):6773-6785. doi: 10.1021/acs.langmuir.3c03557. Epub 2024 Mar 20.
10
Structure of gold atoms on stoichiometric and defective ceria surfaces.
J Chem Phys. 2008 Nov 21;129(19):194708. doi: 10.1063/1.3009629.

引用本文的文献

1
Advancing the Understanding of Oxygen Vacancies in Ceria: Insights into Their Formation, Behavior, and Catalytic Roles.
JACS Au. 2025 Mar 28;5(4):1549-1569. doi: 10.1021/jacsau.5c00095. eCollection 2025 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验