Han Zhong-Kang, Liu Wen, Gao Yi
School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
JACS Au. 2025 Mar 28;5(4):1549-1569. doi: 10.1021/jacsau.5c00095. eCollection 2025 Apr 28.
Oxygen vacancies (O's) in ceria (CeO) are critical structural and electronic features that underpin ceria's remarkable oxygen storage capacity, redox catalytic performance, and wide-ranging applications in catalysis, solid oxide fuel cells, and gas sensors. These vacancies, which result from the removal of oxygen atoms, enable dynamic oxygen exchange between the solid and its environment, profoundly influencing ceria's catalytic properties. The intricate surface structures of ceria play a key role in determining its properties and its interactions with supported metal catalysts. Over the past decade, advancements in state-of-the-art in situ characterizations, first-principles calculations, and emerging machine learning frameworks have significantly enhanced our understanding of the formation mechanisms, behaviors, and catalytic roles of O's. This perspective highlights recent experimental and theoretical progress in ceria surface research, emphasizing the dynamic interplay between surface structures and reactive environments. Additionally, the perspective addresses key challenges in elucidating ceria's defect chemistry and explores opportunities to tailor its properties using multiscale modeling and AI-driven methodologies.
二氧化铈(CeO)中的氧空位(O's)是关键的结构和电子特征,这些特征支撑着二氧化铈卓越的储氧能力、氧化还原催化性能以及在催化、固体氧化物燃料电池和气体传感器等领域的广泛应用。这些因氧原子去除而产生的空位,使得固体与其环境之间能够进行动态氧交换,深刻影响着二氧化铈的催化性能。二氧化铈复杂的表面结构在决定其性能以及与负载型金属催化剂的相互作用方面起着关键作用。在过去十年中,最先进的原位表征、第一性原理计算和新兴的机器学习框架方面的进展显著增强了我们对氧空位的形成机制、行为和催化作用的理解。本视角突出了二氧化铈表面研究中近期的实验和理论进展,强调了表面结构与反应环境之间的动态相互作用。此外,该视角还探讨了阐明二氧化铈缺陷化学方面的关键挑战,并探索了使用多尺度建模和人工智能驱动方法来调整其性能的机会。