Suppr超能文献

BiN单层的双重功能:揭示其光催化和压电催化水分解特性。

Dual functionality of the BiN monolayer: unraveling its photocatalytic and piezocatalytic water splitting properties.

作者信息

Takhar Devender, Birajdar Balaji, Ghosh Ram Krishna

机构信息

Special Centre for Nanoscience, Jawaharlal Nehru University, Delhi 110067, India.

Department of Electronics and Communication Engineering, Indraprastha Institute of Information Technology, Delhi 110020, India.

出版信息

Phys Chem Chem Phys. 2024 Jun 6;26(22):16261-16272. doi: 10.1039/d4cp01047g.

Abstract

To achieve scalable and economically viable green hydrogen (H) production, the photocatalytic and piezocatalytic processes are promising methods. The key to successful overall water splitting (OWS) for H production in these processes is using suitable semiconductor catalysts with appropriate band edge potentials, efficient optical absorption, higher mechanical flexibility, and piezoelectric coefficients. Thus, we explore the bismuth nitride (BiN) monolayer using density functional theory simulations, revealing intriguing catalytic properties. The BiN monolayer is a semiconductor with an indirect electronic bandgap () of 2.08 eV and displays excellent visible light absorption (approximately 10 cm). Detailed analyses show that the band edges satisfy the redox potential for photocatalytic OWS biaxial strain engineering and pH variation. Notably, the solar to hydrogen conversion efficiency () for the BiN monolayer can reach 17.18%, which exceeds the 10% efficiency limit of photocatalysts for economical green H production. The obtained in-plane piezoelectric coefficient of = 16.18 Å C m is superior to widely studied 2D materials. Moreover, the generated piezopotential under oscillatory strain stands at 28.34 V, which can initiate the water redox reaction the piezocatalytic mechanism. This originates from the mechanical flexibility coupled with higher piezoelectric coefficients. The result highlights the BiN monolayer's potential application in photocatalytic, piezocatalytic, and photo-piezo-catalytic OWS.

摘要

为了实现可扩展且经济可行的绿色氢气(H₂)生产,光催化和压电催化过程是很有前景的方法。在这些过程中成功实现用于氢气生产的全水分解(OWS)的关键是使用具有合适带边电位、高效光吸收、更高机械柔韧性和压电系数的半导体催化剂。因此,我们使用密度泛函理论模拟探索了氮化铋(BiN)单层,揭示了其有趣的催化特性。BiN单层是一种间接电子带隙为2.08 eV的半导体,具有出色的可见光吸收能力(约10⁵ cm⁻¹)。详细分析表明,其带边满足光催化OWS的氧化还原电位,可通过双轴应变工程和pH变化进行调节。值得注意的是,BiN单层的太阳能到氢能转换效率(η)可达到17.18%,超过了经济绿色氢气生产中光催化剂10%的效率极限。所获得的面内压电系数d₃₃ = 16.18 Å C m⁻¹优于广泛研究的二维材料。此外,在振荡应变下产生的压电势为28.34 V,可通过压电催化机制引发水的氧化还原反应。这源于其机械柔韧性和较高的压电系数。该结果突出了BiN单层在光催化、压电催化和光 - 压电催化OWS中的潜在应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验