Viana Ricardo L, Mathias Amanda C, Souza Leonardo C, Haerter Pedro
Departamento de Física, Universidade Federal do Paraná, Curitiba, PR 81531-990, Brazil.
Chaos. 2024 May 1;34(5). doi: 10.1063/5.0197988.
The advection of passive scalars in time-independent two-dimensional incompressible fluid flows is an integrable Hamiltonian system. It becomes non-integrable if the corresponding stream function depends explicitly on time, allowing the possibility of chaotic advection of particles. We consider for a specific model (double gyre flow), a given number of exits through which advected particles can leak, without disturbing the flow itself. We investigate fractal escape basins in this problem and characterize fractality by computing the uncertainty exponent and basin entropy. Furthermore, we observe the presence of basin boundaries with points exhibiting the Wada property, i.e., boundary points that separate three or more escape basins.
在与时间无关的二维不可压缩流体流动中,被动标量的平流是一个可积哈密顿系统。如果相应的流函数明确依赖于时间,它就会变成不可积的,从而使得粒子出现混沌平流的可能性。对于一个特定模型(双涡旋流),我们考虑一定数量的出口,被平流的粒子可以通过这些出口泄漏,而不会干扰流动本身。我们研究了这个问题中的分形逃逸盆地,并通过计算不确定性指数和盆地熵来表征分形性。此外,我们观察到盆地边界上存在具有和田属性的点,即分隔三个或更多逃逸盆地的边界点。