Suppr超能文献

基于多交叉注意力特征融合的生物医学命名实体识别。

Biomedical named entity recognition based on multi-cross attention feature fusion.

机构信息

Harbin University of Commerce, Harbin, China.

Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin, China.

出版信息

PLoS One. 2024 May 28;19(5):e0304329. doi: 10.1371/journal.pone.0304329. eCollection 2024.

Abstract

Currently, in the field of biomedical named entity recognition, CharCNN (Character-level Convolutional Neural Networks) or CharRNN (Character-level Recurrent Neural Network) is typically used independently to extract character features. However, this approach does not consider the complementary capabilities between them and only concatenates word features, ignoring the feature information during the process of word integration. Based on this, this paper proposes a method of multi-cross attention feature fusion. First, DistilBioBERT and CharCNN and CharLSTM are used to perform cross-attention word-char (word features and character features) fusion separately. Then, the two feature vectors obtained from cross-attention fusion are fused again through cross-attention to obtain the final feature vector. Subsequently, a BiLSTM is introduced with a multi-head attention mechanism to enhance the model's ability to focus on key information features and further improve model performance. Finally, the output layer is used to output the final result. Experimental results show that the proposed model achieves the best F1 values of 90.76%, 89.79%, 94.98%, 80.27% and 88.84% on NCBI-Disease, BC5CDR-Disease, BC5CDR-Chem, JNLPBA and BC2GM biomedical datasets respectively. This indicates that our model can capture richer semantic features and improve the ability to recognize entities.

摘要

目前,在生物医学命名实体识别领域,CharCNN(字符级卷积神经网络)或 CharRNN(字符级递归神经网络)通常被独立用于提取字符特征。然而,这种方法没有考虑它们之间的互补能力,只是将单词特征串联起来,忽略了单词集成过程中的特征信息。基于此,本文提出了一种多交叉注意力特征融合方法。首先,使用 DistilBioBERT 和 CharCNN 以及 CharLSTM 分别进行交叉注意字-字符(单词特征和字符特征)融合。然后,通过交叉注意将从交叉注意融合中获得的两个特征向量再次融合,以获得最终的特征向量。随后,引入具有多头注意力机制的 BiLSTM,以增强模型对关键信息特征的关注能力,并进一步提高模型性能。最后,使用输出层输出最终结果。实验结果表明,所提出的模型在 NCBI-Disease、BC5CDR-Disease、BC5CDR-Chem、JNLPBA 和 BC2GM 生物医学数据集上分别实现了最佳的 F1 值 90.76%、89.79%、94.98%、80.27%和 88.84%。这表明我们的模型可以捕获更丰富的语义特征并提高识别实体的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9727/11132514/3d186e526c39/pone.0304329.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验