Biomedical Informatics Center, Medical University of South Carolina, Charleston, SC, United States.
Institute of Digital Technologies for Personalised Healthcare (MeDiTech), University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland.
J Med Internet Res. 2024 May 28;26:e55676. doi: 10.2196/55676.
Clinical natural language processing (NLP) researchers need access to directly comparable evaluation results for applications such as text deidentification across a range of corpus types and the means to easily test new systems or corpora within the same framework. Current systems, reported metrics, and the personally identifiable information (PII) categories evaluated are not easily comparable.
This study presents an open-source and extensible end-to-end framework for comparing clinical NLP system performance across corpora even when the annotation categories do not align.
As a use case for this framework, we use 6 off-the-shelf text deidentification systems (ie, CliniDeID, deid from PhysioNet, MITRE Identity Scrubber Toolkit [MIST], NeuroNER, National Library of Medicine [NLM] Scrubber, and Philter) across 3 standard clinical text corpora for the task (2 of which are publicly available) and 1 private corpus (all in English), with annotation categories that are not directly analogous. The framework is built on shell scripts that can be extended to include new systems, corpora, and performance metrics. We present this open tool, multiple means for aligning PII categories during evaluation, and our initial timing and performance metric findings. Code for running this framework with all settings needed to run all pairs are available via Codeberg and GitHub.
From this case study, we found large differences in processing speed between systems. The fastest system (ie, MIST) processed an average of 24.57 (SD 26.23) notes per second, while the slowest (ie, CliniDeID) processed an average of 1.00 notes per second. No system uniformly outperformed the others at identifying PII across corpora and categories. Instead, a rich tapestry of performance trade-offs emerged for PII categories. CliniDeID and Philter prioritize recall over precision (with an average recall 6.9 and 11.2 points higher, respectively, for partially matching spans of text matching any PII category), while the other 4 systems consistently have higher precision (with MIST's precision scoring 20.2 points higher, NLM Scrubber scoring 4.4 points higher, NeuroNER scoring 7.2 points higher, and deid scoring 17.1 points higher). The macroaverage recall across corpora for identifying names, one of the more sensitive PII categories, included deid (48.8%) and MIST (66.9%) at the low end and NeuroNER (84.1%), NLM Scrubber (88.1%), and CliniDeID (95.9%) at the high end. A variety of metrics across categories and corpora are reported with a wider variety (eg, F-score) available via the tool.
NLP systems in general and deidentification systems and corpora in our use case tend to be evaluated in stand-alone research articles that only include a limited set of comparators. We hold that a single evaluation pipeline across multiple systems and corpora allows for more nuanced comparisons. Our open pipeline should reduce barriers to evaluation and system advancement.
临床自然语言处理(NLP)研究人员需要能够直接比较各种语料库类型的文本去识别等应用程序的评估结果,并且需要能够方便地在同一框架内测试新系统或语料库。当前的系统、报告的指标和评估的个人身份信息(PII)类别不容易进行比较。
本研究提出了一个开源且可扩展的端到端框架,用于比较跨语料库的临床 NLP 系统性能,即使注释类别不匹配也是如此。
作为该框架的一个用例,我们使用 6 个现成的文本去识别系统(即 CliniDeID、来自 PhysioNet 的 deid、MITRE 身份清理工具包(MIST)、NeuroNER、国家医学图书馆(NLM)清理器和 Philter),对 3 个标准临床文本语料库(其中 2 个是公开的)和 1 个私有语料库(均为英文)进行任务评估,这些语料库的注释类别并不直接相似。该框架建立在外壳脚本之上,可以扩展以包含新的系统、语料库和性能指标。我们展示了这个开放工具、在评估期间对齐 PII 类别的多种方法,以及我们的初步定时和性能指标发现。通过 Codeberg 和 GitHub 提供了运行此框架所需的所有设置的代码。
从这个案例研究中,我们发现系统之间的处理速度存在很大差异。最快的系统(即 MIST)平均每秒处理 24.57(SD 26.23)条笔记,而最慢的系统(即 CliniDeID)平均每秒处理 1.00 条笔记。没有一个系统在跨语料库和类别识别 PII 方面始终表现优于其他系统。相反,出现了一系列丰富的性能权衡,针对 PII 类别。CliniDeID 和 Philter 优先考虑召回率而不是精度(对于匹配任何 PII 类别的部分匹配文本跨度,分别有 6.9 和 11.2 个点的召回率更高),而其他 4 个系统的精度始终更高(MIST 的精度高 20.2 个点,NLM Scrubber 高 4.4 个点,NeuroNER 高 7.2 个点,deid 高 17.1 个点)。在识别姓名等更敏感的 PII 类别方面,跨语料库的宏平均召回率包括 deid(48.8%)和 MIST(66.9%)处于低端,NeuroNER(84.1%)、NLM Scrubber(88.1%)和 CliniDeID(95.9%)处于高端。报告了跨类别和语料库的各种指标,该工具还提供了更广泛的指标(例如 F 分数)。
一般来说,NLP 系统以及我们案例中的去识别系统和语料库往往在独立的研究文章中进行评估,这些文章只包括有限数量的比较器。我们认为,跨多个系统和语料库的单一评估管道可以进行更细致的比较。我们的开放管道应该降低评估和系统改进的障碍。