Suppr超能文献

pyDeid:一种用于对自由文本医疗记录进行去识别处理的经过改进的、快速、灵活且可推广的基于规则的方法。

pyDeid: an improved, fast, flexible, and generalizable rule-based approach for deidentification of free-text medical records.

作者信息

Sundrelingam Vaakesan, Parimoo Shireen, Pogacar Frances, Koppula Radha, Shin Saeha, Pou-Prom Chloe, Roberts Surain B, Verma Amol A, Razak Fahad

机构信息

Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON M5B 1T8, Canada.

Centre for Computational Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.

出版信息

JAMIA Open. 2025 Jan 22;8(1):ooae152. doi: 10.1093/jamiaopen/ooae152. eCollection 2025 Feb.

Abstract

OBJECTIVES

Deidentification of personally identifiable information in free-text clinical data is fundamental to making these data broadly available for research. However, there exist gaps in the deidentification landscape with regard to the functionality and flexibility of extant tools, as well as suboptimal tradeoffs between deidentification accuracy and speed. To address these gaps and tradeoffs, we develop a new Python-based deidentification software, pyDeid.

MATERIALS AND METHODS

pyDeid uses a combination of regular expression-based rules, fixed exclusion lists and inclusion lists to deidentify free-text data. Additional configurations of pyDeid include optional named entity recognition and custom name lists. We measure its deidentification performance and speed on 700 admission notes from a Canadian hospital, the publicly available n2c2 benchmark dataset of American discharge notes, as well as a synthetic dataset of artificial intelligence (AI) generated admission notes. We also compare its performance with the Physionet De-identification Software and the popular open-source Philter tool.

RESULTS

Different configurations of pyDeid outperformed other tools on various metrics, with a "best" accuracy value of 0.988, best precision of 0.889, best recall of 0.950, and best F1 score of 0.904. All configurations of pyDeid were significantly faster than Philter and Physionet De-identification Software, with the fastest deidentification speed of 0.48 s per note.

DISCUSSION AND CONCLUSIONS

pyDeid allows the flexibility to prioritize between performance and speed, as well as precision and recall, while addressing some of the gaps in functionality left by other tools. pyDeid is also generalizable to domains outside of clinical data and can be further customized for specific contexts or for particular workflows.

摘要

目的

对自由文本临床数据中的个人身份信息进行去识别处理,是使这些数据能够广泛用于研究的基础。然而,现有的去识别工具在功能和灵活性方面存在差距,并且在去识别准确性和速度之间的权衡也不尽如人意。为了弥补这些差距并优化权衡,我们开发了一种新的基于Python的去识别软件pyDeid。

材料与方法

pyDeid使用基于正则表达式的规则、固定排除列表和包含列表的组合来对自由文本数据进行去识别。pyDeid的其他配置包括可选的命名实体识别和自定义名称列表。我们在来自一家加拿大医院的700份入院记录、美国出院记录的公开可用n2c2基准数据集以及人工智能(AI)生成的入院记录合成数据集上,测量其去识别性能和速度。我们还将其性能与Physionet去识别软件和流行的开源Philter工具进行比较。

结果

pyDeid的不同配置在各种指标上均优于其他工具,“最佳”准确率值为0.988,最佳精确率为0.889,最佳召回率为0.950,最佳F1分数为0.904。pyDeid的所有配置都比Philter和Physionet去识别软件快得多,最快的去识别速度为每份记录0.48秒。

讨论与结论

pyDeid允许在性能与速度以及精确率与召回率之间灵活地进行优先级排序,同时弥补了其他工具在功能上留下的一些差距。pyDeid还可推广到临床数据之外的领域,并可针对特定上下文或特定工作流程进行进一步定制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf6/11752853/74379d2d3451/ooae152f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验