Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, United States of America.
Center for Mind and Brain; Department of Neurobiology, Physiology, and Behavior; Department of Otolaryngology-Head and Neck Surgery. University of California, Davis, CA 95616, United States of America.
J Neural Eng. 2024 Jun 20;21(3). doi: 10.1088/1741-2552/ad5107.
. Decoding gestures from the upper limb using noninvasive surface electromyogram (sEMG) signals is of keen interest for the rehabilitation of amputees, artificial supernumerary limb augmentation, gestural control of computers, and virtual/augmented realities. We show that sEMG signals recorded across an array of sensor electrodes in multiple spatial locations around the forearm evince a rich geometric pattern of global motor unit (MU) activity that can be leveraged to distinguish different hand gestures.. We demonstrate a simple technique to analyze spatial patterns of muscle MU activity within a temporal window and show that distinct gestures can be classified in both supervised and unsupervised manners. Specifically, we construct symmetric positive definite covariance matrices to represent the spatial distribution of MU activity in a time window of interest, calculated as pairwise covariance of electrical signals measured across different electrodes.. This allows us to understand and manipulate multivariate sEMG timeseries on a more natural subspace-the Riemannian manifold. Furthermore, it directly addresses signal variability across individuals and sessions, which remains a major challenge in the field. sEMG signals measured at a single electrode lack contextual information such as how various anatomical and physiological factors influence the signals and how their combined effect alters the evident interaction among neighboring muscles.. As we show here, analyzing spatial patterns using covariance matrices on Riemannian manifolds allows us to robustly model complex interactions across spatially distributed MUs and provides a flexible and transparent framework to quantify differences in sEMG signals across individuals. The proposed method is novel in the study of sEMG signals and its performance exceeds the current benchmarks while being computationally efficient.
使用非侵入式表面肌电图 (sEMG) 信号对手臂的运动进行解码,对于义肢康复、人工假手增强、计算机手势控制以及虚拟现实/增强现实等领域具有重要意义。我们展示了,在前臂周围多个空间位置记录的 sEMG 信号表现出丰富的全局运动单元 (MU) 活动的几何模式,可以利用这些模式来区分不同的手势。我们演示了一种简单的技术,用于分析肌肉 MU 活动在时间窗口内的空间模式,并表明可以以监督和无监督的方式对不同的手势进行分类。具体来说,我们构建了对称正定协方差矩阵来表示感兴趣的时间窗口内 MU 活动的空间分布,该矩阵是通过计算不同电极之间的电信号的成对协方差来计算的。这使我们能够在更自然的子空间(黎曼流形)上理解和操作多变量 sEMG 时间序列。此外,它直接解决了个体和会话之间信号可变性的问题,这仍然是该领域的主要挑战。单个电极测量的 sEMG 信号缺乏上下文信息,例如各种解剖和生理因素如何影响信号,以及它们的综合效应如何改变相邻肌肉之间的明显相互作用。正如我们在这里展示的那样,使用黎曼流形上的协方差矩阵分析空间模式可以使我们稳健地对空间分布的 MU 之间的复杂相互作用进行建模,并提供了一个灵活透明的框架来量化个体之间的 sEMG 信号差异。该方法在 sEMG 信号研究中是新颖的,其性能超过了当前的基准,同时计算效率也很高。