Center for Brain Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
Department of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Nat Commun. 2024 May 28;15(1):4524. doi: 10.1038/s41467-024-48875-0.
Membrane fusion, merging two lipid bilayers, is crucial for fabricating artificial membrane structures. Over the past 40 years, in contrast to precise and controllable membrane fusion in-vivo through specific molecules such as SNAREs, controlling the fusion in-vitro while fabricating artificial membrane structures in physiological ionic solutions without fusion proteins has been a challenge, becoming a significant obstacle to practical applications. We present an approach consisting of an electric field and a few kPa hydraulic pressure as an additional variable to physically control the fusion, enabling tuning of the shape and size of the 3D freestanding lipid bilayers in physiological ionic solutions. Mechanical model analysis reveals that pressure-induced parallel/normal tensions enhance fusion among membranes in the microwell. In-vitro peptide-membrane assay, mimicking vesicular transport via pressure-assisted fusion, and stability of 38 days with in-chip pressure control via pore size-regulated hydrogel highlight the potential for diverse biological applications.
膜融合,即将两个脂质双层合并,对于构建人工膜结构至关重要。在过去的 40 年中,与通过 SNARE 等特定分子在体内精确和可控的膜融合形成鲜明对比的是,在生理离子溶液中构建人工膜结构而不使用融合蛋白时,体外控制融合一直是一个挑战,成为实际应用的重大障碍。我们提出了一种方法,该方法将电场和几 kPa 的液压作为附加变量来物理控制融合,从而能够调节生理离子溶液中 3D 独立脂质双层的形状和大小。机械模型分析表明,压力诱导的平行/法向张力增强了微腔内膜之间的融合。通过压力辅助融合模拟囊泡运输的体外肽-膜测定以及通过孔径调节水凝胶进行 38 天的芯片内压力控制的稳定性突出了其在各种生物应用中的潜力。