Hassan Fahad, Backer Sumina Namboorimadathil, Almanassra Ismail W, Ali Atieh Muataz, Elbahri Mady, Shanableh Abdallah
Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, UAE.
Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah, 27272, UAE.
Sci Rep. 2024 May 28;14(1):12220. doi: 10.1038/s41598-024-60306-0.
In pursuit of an efficient visible light driven photocatalyst for paracetamol degradation in wastewater, we have fabricated the ZnO/g-CN S-Scheme photocatalysts and explored the optimal percentage to form a composite of graphitic carbon nitride (g-CN) with zinc oxide (ZnO) for enhanced performance. Our study aimed to address the urgent need for a catalyst capable of environmentally friendly degradation of paracetamol, a common pharmaceutical pollutant, using visible light conditions. Here, we tailored the band gap of a photocatalyst to match solar radiation as a transformative advancement in environmental catalysis. Notably, the optimized composite, containing 10 wt.% g-CN with ZnO, demonstrated outstanding paracetamol degradation efficiency of 95% within a mere 60-min exposure to visible light. This marked enhancement represented a 2.24-fold increase in the reaction rate compared to lower wt. percentage composites (3 wt.% g-CN) and pristine g-CN. The exceptional photocatalytic activity of the optimized composite can be attributed to the band gap narrowing that closely matched the maximum solar radiation spectrum. This, coupled with efficient charge transfer mechanisms through S-scheme heterojunction formation and an abundance of active sites due to increased surface area and reduced particle size, contributed to the remarkable performance. Trapping experiments identified hydroxyl radicals as the primary reactive species responsible for paracetamol photoreduction. Furthermore, the synthesized ZnO/g-CN composite exhibited exceptional photostability and reusability, underscoring its practical applicability. Thus, this research marks a significant stride towards the development of an effective and sustainable visible light photocatalyst for the removal of pharmaceutical contaminants from aquatic environments.
为了寻找一种高效的可见光驱动光催化剂用于降解废水中的对乙酰氨基酚,我们制备了ZnO/g-CN S型光催化剂,并探索了形成石墨相氮化碳(g-CN)与氧化锌(ZnO)复合材料的最佳比例,以提高其性能。我们的研究旨在满足迫切需求,即开发一种能够在可见光条件下对常见药物污染物对乙酰氨基酚进行环境友好型降解的催化剂。在此,我们调整了光催化剂的带隙以匹配太阳辐射,这是环境催化领域的一项变革性进展。值得注意的是,含有10 wt.% g-CN与ZnO的优化复合材料在仅60分钟的可见光照射下,对乙酰氨基酚的降解效率高达95%。与较低重量百分比的复合材料(3 wt.% g-CN)和原始g-CN相比,这一显著提高代表反应速率提高了2.24倍。优化复合材料的卓越光催化活性可归因于其带隙变窄,与太阳辐射光谱最大值紧密匹配。这与通过S型异质结形成的高效电荷转移机制以及由于表面积增加和粒径减小而产生的大量活性位点相结合,促成了其卓越性能。捕获实验确定羟基自由基是对乙酰氨基酚光还原的主要反应物种。此外,合成的ZnO/g-CN复合材料表现出卓越的光稳定性和可重复使用性,突出了其实际应用价值。因此,这项研究朝着开发一种有效且可持续的可见光光催化剂以去除水环境中的药物污染物迈出了重要一步。