Zelený David, Helsen Kenny, Lee Yi-Nuo
Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan.
Oecologia. 2024 Jun;205(2):257-269. doi: 10.1007/s00442-024-05568-1. Epub 2024 May 28.
Community weighted means (CWMs) are widely used to study the relationship between community-level functional traits and environment. For certain null hypotheses, CWM-environment relationships assessed by linear regression or ANOVA and tested by standard parametric tests are prone to inflated Type I error rates. Previous research has found that this problem can be solved by permutation tests (i.e., the max test). A recent extension of the CWM approach allows the inclusion of intraspecific trait variation (ITV) by the separate calculation of fixed, site-specific, and intraspecific CWMs. The question is whether the same Type I error rate inflation exists for the relationship between environment and site-specific or intraspecific CWM. Using simulated and real-world community datasets, we show that site-specific CWM-environment relationships have also inflated Type I error rate, and this rate is negatively related to the relative ITV magnitude. In contrast, for intraspecific CWM-environment relationships, standard parametric tests have the correct Type I error rate, although somewhat reduced statistical power. We introduce an ITV-extended version of the max test, which can solve the inflation problem for site-specific CWM-environment relationships and, without considering ITV, becomes equivalent to the "original" max test used for the CWM approach. We show that this new ITV-extended max test works well across the full possible magnitude of ITV on both simulated and real-world data. Most real datasets probably do not have intraspecific trait variation large enough to alleviate the problem of inflated Type I error rate, and published studies possibly report overly optimistic significance results.
群落加权均值(CWMs)被广泛用于研究群落水平功能性状与环境之间的关系。对于某些零假设,通过线性回归或方差分析评估并经标准参数检验的CWM与环境的关系容易出现过高的I型错误率。先前的研究发现,这个问题可以通过置换检验(即最大检验)来解决。CWM方法的一个最新扩展允许通过分别计算固定的、特定地点的和种内的CWMs来纳入种内性状变异(ITV)。问题在于环境与特定地点或种内CWM之间的关系是否也存在同样的I型错误率膨胀。使用模拟和真实世界的群落数据集,我们表明特定地点的CWM与环境的关系也存在I型错误率膨胀,且该比率与相对ITV大小呈负相关。相比之下,对于种内CWM与环境的关系,标准参数检验具有正确的I型错误率,尽管统计功效有所降低。我们引入了一种ITV扩展版的最大检验,它可以解决特定地点的CWM与环境关系中的膨胀问题,并且在不考虑ITV的情况下,等同于用于CWM方法的“原始”最大检验。我们表明,这种新的ITV扩展版最大检验在模拟和真实世界数据上,对于ITV的所有可能大小都能很好地发挥作用。大多数实际数据集可能没有足够大的种内性状变异来缓解I型错误率膨胀的问题,而且已发表的研究可能报告了过于乐观的显著性结果。