School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK.
Environ Sci Pollut Res Int. 2024 Jun;31(26):38465-38484. doi: 10.1007/s11356-024-33791-z. Epub 2024 May 28.
The bioaccumulation of lead in soil poses a significant human health risk. The solidification/stabilization (S/S) technique, employing binders like Portland cement or lime, is a common method for remediating lead-contaminated soil. However, cement production has adverse environmental impacts, prompting the exploration of eco-friendly alternatives like alkali-activated materials (AAMs). This study assesses AAM efficacy in the S/S of lead-contaminated soil. The effects of several factors, including varying amounts of volcanic ash (VA), lead concentration, curing temperatures, and curing times are investigated. Unconfined compressive strength (UCS), toxicity characteristic leaching procedure test (TCLP), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscope-energy-dispersive spectroscopy-mapping analyses (FESEM/EDS/mapping) analyses are used to study the specimens. The findings indicated a substantial increase in the UCS of lead-contaminated soil treated with 15% VA (under oven curing (OC) conditions), and 10% VA (under ambient curing (AC) conditions) exhibited remarkable increases of up to 600% and 458%, respectively. Moreover, the leaching of Pb ions from samples contaminated with 10,000 mg/kg (under OC conditions) and 2500 mg/kg (under AC conditions) experienced significant reductions of 87% (from 135.14 to 13.36 ppm) and 91% (from 26.32 to 2.21 ppm), respectively. The S/S process in these samples operated through three primary mechanisms of chemical bonding, physical encapsulation, and the formation of insoluble silicate. The formation of N-A-S-H and hydroxy sodalite structures played a vital role in facilitating these mechanisms. Therefore, alkali-activated VA demonstrated excellent performance in the remediation of lead-contaminated soil.
土壤中铅的生物累积对人类健康构成重大风险。固化/稳定化(S/S)技术采用波特兰水泥或石灰等粘结剂,是修复受铅污染土壤的常用方法。然而,水泥生产对环境有不利影响,促使人们探索碱激活材料(AAMs)等环保替代品。本研究评估了 AAM 在 S/S 受铅污染土壤中的效果。研究了几种因素的影响,包括不同量的火山灰(VA)、铅浓度、养护温度和养护时间。使用无侧限抗压强度(UCS)、毒性特征浸出程序测试(TCLP)、X 射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和场发射扫描电子显微镜-能量色散光谱-映射分析(FESEM/EDS/mapping)分析来研究样品。结果表明,用 15%VA(在烘箱养护(OC)条件下)处理的受铅污染土壤的 UCS 有了很大提高,而在 10%VA(在环境养护(AC)条件下)处理下,UCS 分别显著提高了 600%和 458%。此外,在 OC 条件下污染浓度为 10000mg/kg 和在 AC 条件下污染浓度为 2500mg/kg 的样品中 Pb 离子的浸出量分别显著减少了 87%(从 135.14 降至 13.36ppm)和 91%(从 26.32 降至 2.21ppm)。这些样品中的 S/S 过程通过化学结合、物理封装和不溶性硅酸盐的形成这三种主要机制起作用。N-A-S-H 和羟基钠沸石结构的形成在促进这些机制方面发挥了重要作用。因此,碱激活 VA 在修复受铅污染土壤方面表现出优异的性能。