Suppr超能文献

利用小型Un1Cas12f1核酸酶对水稻和番茄进行基因组编辑。

Genome editing in rice and tomato with a small Un1Cas12f1 nuclease.

作者信息

Tang Xu, Eid Ayman, Zhang Rui, Cheng Yanhao, Liu Annan, Chen Yurong, Chen Pengxu, Zhang Yong, Qi Yiping

机构信息

Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.

Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA.

出版信息

Plant Genome. 2024 Jun;17(2):e20465. doi: 10.1002/tpg2.20465. Epub 2024 May 28.

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR) systems have been demonstrated to be the foremost compelling genetic tools for manipulating prokaryotic and eukaryotic genomes. Despite the robustness and versatility of Cas9 and Cas12a/b nucleases in mammalian cells and plants, their large protein sizes may hinder downstream applications. Therefore, investigating compact CRISPR nucleases will unlock numerous genome editing and delivery challenges that constrain genetic engineering and crop development. In this study, we assessed the archaeal miniature Un1Cas12f1 type-V CRISPR nuclease for genome editing in rice and tomato protoplasts. By adopting the reengineered guide RNA modifications ge4.1 and comparing polymerase II (Pol II) and polymerase III (Pol III) promoters, we demonstrated uncultured archaeon Cas12f1 (Un1Cas12f1) genome editing efficacy in rice and tomato protoplasts. We characterized the protospacer adjacent motif (PAM) requirements and mutation profiles of Un1Cas12f1 in both plant species. Interestingly, we found that Pol III promoters, not Pol II promoters, led to higher genome editing efficiency when they were used to drive guide RNA expression. Unlike in mammalian cells, the engineered Un1Cas12f1-RRA variant did not perform better than the wild-type Un1Cas12f1 nuclease, suggesting continued protein engineering and other innovative approaches are needed to further improve Un1Cas12f1 genome editing in plants.

摘要

成簇规律间隔短回文重复序列(CRISPR)系统已被证明是用于操纵原核和真核基因组的最重要的基因工具。尽管Cas9和Cas12a/b核酸酶在哺乳动物细胞和植物中具有强大的功能和通用性,但其较大的蛋白质尺寸可能会阻碍下游应用。因此,研究紧凑型CRISPR核酸酶将解决许多限制基因工程和作物发育的基因组编辑与递送挑战。在本研究中,我们评估了古菌微型Un1Cas12f1 V型CRISPR核酸酶在水稻和番茄原生质体中的基因组编辑能力。通过采用重新设计的向导RNA修饰ge4.1并比较聚合酶II(Pol II)和聚合酶III(Pol III)启动子,我们证明了未培养古菌Cas12f1(Un1Cas12f1)在水稻和番茄原生质体中的基因组编辑效率。我们还确定了这两种植物中Un1Cas12f1的原间隔相邻基序(PAM)要求和突变谱。有趣的是,我们发现当使用Pol III启动子而非Pol II启动子来驱动向导RNA表达时,基因组编辑效率更高。与在哺乳动物细胞中不同,工程化的Un1Cas12f1-RRA变体的表现并不优于野生型Un1Cas12f1核酸酶,这表明需要继续进行蛋白质工程和其他创新方法来进一步提高Un1Cas12f1在植物中的基因组编辑能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验