College of Science, Inner Mongolia University of Technology, Hohhot, P. R. China.
Electrophoresis. 2024 Oct;45(19-20):1727-1747. doi: 10.1002/elps.202300297. Epub 2024 May 29.
This research examines the electromagnetohydrodynamic (EMHD) flow of Jeffrey fluid in a rough circular microchannel while considering the effect of surface charge on slip. The channel wall corrugations are described as periodic sinusoidal waves with small amplitudes. The perturbation method is employed to derive solutions for velocity and volumetric flow rate, and a combination of three-dimensional (3D) and two-dimensional (2D) graphical representations is utilized to effectively illustrate the impacts of relevant parameters on them. The significance of the Reynolds number in investigations of EMHD flow is particularly emphasized. Furthermore, the effect of wall roughness and wave number on velocity and the influence of wall roughness and surface charge density on volumetric flow rate are primarily focused on, respectively, at various Reynolds numbers. The results suggest that increasing the wall roughness leads to a reduction in velocity at low Reynolds numbers ( ) and an increment at high Reynolds numbers ( ). For any Reynolds number, a roughness with an odd multiple of wave number ( ) will result in a more stable velocity profile compared to one with an even multiple of wave number ( ). Decreasing the relaxation time while increasing the retardation time and Hartmann number can diminish the impact of wall roughness and surface charge density on volumetric flow rate, independent of the Reynolds number. Interestingly, in the existence of wall roughness, further consideration of the effect of surface charge on slip leads to a 15% drop in volumetric flow rate at and a 32% slippage at . However, in the condition where the effect of surface charge on slip is considered, further examination of the presence of wall roughness only results in a 1.4% decline in volumetric flow rate at and a 1.6% rise at . These findings are crucial for optimizing the EMHD flow models in microchannels.
本研究考察了考虑表面电荷滑移效应的粗糙圆腔中 Jeffrey 流体的电磁流体动力学(EMHD)流动。通道壁的波纹被描述为具有小振幅的周期性正弦波。采用微扰法得到速度和体积流量的解,并结合三维(3D)和二维(2D)图形表示来有效地说明相关参数对它们的影响。特别强调了雷诺数在 EMHD 流动研究中的重要性。此外,分别在不同的雷诺数下,重点研究了壁粗糙度和波数对速度的影响以及壁粗糙度和表面电荷密度对体积流量的影响。结果表明,在低雷诺数( )下,增加壁粗糙度会导致速度降低,而在高雷诺数( )下,速度会增加。对于任何雷诺数,奇数倍波数( )的粗糙度会导致比偶数倍波数( )的粗糙度更稳定的速度分布。减小弛豫时间 而增大延迟时间 和 Hartmann 数 可以减小壁粗糙度 和表面电荷密度 对体积流量的影响,与雷诺数无关。有趣的是,在存在壁粗糙度的情况下,进一步考虑表面电荷滑移效应会导致体积流量在 时降低 15%,在 时滑移 32%。然而,在考虑表面电荷滑移效应的情况下,进一步研究壁粗糙度的存在仅导致体积流量在 时降低 1.4%,在 时升高 1.6%。这些发现对于优化微通道中的 EMHD 流动模型至关重要。