Suppr超能文献

用于超快锌离子储能的激光刻划电池电极。

Laser-Scribed Battery Electrodes for Ultrafast Zinc-Ion Energy Storage.

作者信息

Liu Bo, Huang Ailun, Yuan Xintong, Chang Xueying, Yang Zhiyin, Lyle Katelyn, Kaner Richard B, Li Yuzhang

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA.

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.

出版信息

Adv Mater. 2024 Aug;36(32):e2404796. doi: 10.1002/adma.202404796. Epub 2024 Jun 6.

Abstract

Aqueous Zn batteries are promising for large-scale energy storage but are plagued by the lack of high-performance cathode materials that enable high specific capacity, ultrafast charging, and outstanding cycling stability. Here, a laser-scribed nano-vanadium oxide (LNVO) cathode is designed that can simultaneously achieve these properties. The material stores charge through Faradaic redox reactions on/near the surface at fast rates owing to the small grain size of vanadium oxide and interpenetrating 3D graphene network, displaying a surface-controlled capacity contribution (90%-98%). Multiple characterization techniques unambiguously reveal that zinc and hydronium ions co-insert with minimal lattice change upon cycling. It is demonstrated that a high specific capacity of 553 mAh g is achieved at 0.1 A g, and an impressive 264 mAh g capacity is retained at 100 A g within 10 s, showing excellent rate capability. The LNVO/Zn can also reach >90% capacity retention after 3000 cycles at a high rate of 30 A g, as well as achieving both high energy (369 Wh kg) and power densities (56306 W kg). Moreover, the LNVO cathode retains its excellent cycling performance when integrated into quasi-solid-state pouch cells, further demonstrating mechanical stability and its potential for practical application in wearable and grid-scale applications.

摘要

水系锌电池在大规模储能方面具有广阔前景,但却因缺乏能够实现高比容量、超快充电和出色循环稳定性的高性能正极材料而受到困扰。在此,设计了一种激光刻写的纳米钒氧化物(LNVO)正极,它能够同时实现这些性能。由于钒氧化物的小晶粒尺寸和相互贯穿的三维石墨烯网络,该材料通过表面/近表面的法拉第氧化还原反应快速存储电荷,显示出表面控制的容量贡献(90%-98%)。多种表征技术明确揭示,锌离子和水合氢离子在循环过程中以最小的晶格变化共同嵌入。结果表明,在0.1 A g的电流密度下可实现553 mAh g的高比容量,在10 s内以100 A g的电流密度循环时仍能保持264 mAh g的可观容量,展现出优异的倍率性能。LNVO/Zn电池在30 A g的高电流密度下循环3000次后,容量保持率也能达到>90%,同时实现了高能量密度(369 Wh kg)和高功率密度(56306 W kg)。此外,当将LNVO正极集成到准固态软包电池中时,它仍保持其优异的循环性能,进一步证明了其机械稳定性以及在可穿戴和电网规模应用中的实际应用潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验