Suppr超能文献

人体和机器手臂的刚度和顺应性的最佳配置。

Optimal configurations for stiffness and compliance in human & robot arms.

机构信息

School of Electronic & Electrical Engineering, University of Leeds, Woodhouse, United Kingdom.

Center for Intelligent & Robotic Systems, Istituto Italiano di Tecnologia, Genoa, GE, Italy.

出版信息

PLoS One. 2024 May 29;19(5):e0302987. doi: 10.1371/journal.pone.0302987. eCollection 2024.

Abstract

Research in neurophysiology has shown that humans are able to adapt the mechanical stiffness at the hand in order to resist disturbances. This has served as inspiration for optimising stiffness in robot arms during manipulation tasks. Endpoint stiffness is modelled in Cartesian space, as though the hand were in independent rigid body. But an arm is a series of rigid bodies connected by articulated joints. The contribution of the joints and arm configuration to the endpoint stiffness has not yet been quantified. In this paper we use mathematical optimisation to find conditions for maximum stiffness and compliance with respect to an externally applied force. By doing so, we can retroactively explain observations made about humans using these mathematically optimal conditions. We then show how this optimisation can be applied to robotic task planning and control. Experiments on a humanoid robot show similar arm posture to that observed in humans. This suggests there is an underlying physical principle by which humans optimise stiffness. We can use this to derive natural control methods for robots.

摘要

神经生理学研究表明,人类能够调整手部的机械刚度以抵抗干扰。这为优化机器人手臂在操作任务中的刚度提供了灵感。端点刚度在笛卡尔空间中建模,就好像手是独立的刚体一样。但是,手臂是由关节连接的一系列刚体。关节和臂配置对端点刚度的贡献尚未量化。在本文中,我们使用数学优化来找到最大刚度和对外力的顺应性的条件。通过这样做,我们可以用这些数学最优条件来反推对人类的观察。然后,我们展示了如何将这种优化应用于机器人任务规划和控制。仿人机器人的实验显示出与人类观察到的相似的手臂姿势。这表明人类优化刚度存在潜在的物理原理。我们可以利用这一点为机器人导出自然的控制方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5b4/11135727/5bb354128b20/pone.0302987.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验