Suppr超能文献

基于头臂模型的机器人跟踪外部目标和身体部位的类人行为生成。

Human-Like Behavior Generation Based on Head-Arms Model for Robot Tracking External Targets and Body Parts.

出版信息

IEEE Trans Cybern. 2015 Aug;45(8):1390-400. doi: 10.1109/TCYB.2014.2351416. Epub 2014 Sep 18.

Abstract

Facing and pointing toward moving targets is a usual and natural behavior in daily life. Social robots should be able to display such coordinated behaviors in order to interact naturally with people. For instance, a robot should be able to point and look at specific objects. This is why, a scheme to generate coordinated head-arm motion for a humanoid robot with two degrees-of-freedom for the head and seven for each arm is proposed in this paper. Specifically, a virtual plane approach is employed to generate the analytical solution of the head motion. A quadratic program (QP)-based method is exploited to formulate the coordinated dual-arm motion. To obtain the optimal solution, a simplified recurrent neural network is used to solve the QP problem. The effectiveness of the proposed scheme is demonstrated using both computer simulation and physical experiments.

摘要

面向和指向移动目标是日常生活中的常见和自然行为。社交机器人应该能够展示这种协调的行为,以便与人类自然交互。例如,机器人应该能够指向和查看特定的物体。这就是为什么本文提出了一种用于具有两个自由度的头部和每个手臂七个自由度的人形机器人的协调头部-手臂运动的方案。具体来说,采用虚拟平面方法生成头部运动的解析解。利用基于二次规划(QP)的方法来制定协调的双臂运动。为了获得最优解,使用简化的递归神经网络来求解 QP 问题。使用计算机仿真和物理实验验证了所提出方案的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验