Wang Kang, Pera-Titus Marc
Cardiff Catalysis Institute, Cardiff University, Cardiff CF10 3AT, UK.
Sci Adv. 2024 May 31;10(22):eado5448. doi: 10.1126/sciadv.ado5448. Epub 2024 May 29.
Gas-liquid-solid catalytic reactions are widespread in nature and man-made technologies. Recently, the exceptional reactivity observed on (electro)sprayed microdroplets, in comparison to bulk gas-liquid systems, has attracted the attention of researchers. In this perspective, we compile possible strategies to engineer catalytically active gas-liquid-(solid) interfaces based on membrane contactors, microdroplets, micromarbles, microbubbles, and microfoams to produce commodity chemicals such as hydrogen peroxide, ammonia, and formic acid. In particular, particle-stabilized microfoams, with superior upscaling capacity, emerge as a promising and versatile platform to conceive high-performing (catalytic) gas-liquid-(solid) nanoreactors. Gas-liquid-(solid) nanoreactors could circumvent current limitations of state-of-the-art multiphase reactors (e.g., stirred tanks, trickle beds, and bubble columns) suffering from poor gas solubility and mass transfer resistances and access gas-liquid-(solid) reactors with lower cost and carbon footprint.
气-液-固催化反应在自然界和人造技术中广泛存在。最近,与本体气-液系统相比,(电)喷雾微滴所表现出的卓越反应活性引起了研究人员的关注。从这个角度出发,我们汇总了基于膜接触器、微滴、微珠、微泡和微泡沫来设计具有催化活性的气-液-(固)界面的可能策略,以生产过氧化氢、氨和甲酸等商品化学品。特别是,具有卓越放大能力的颗粒稳定微泡沫,成为构建高性能(催化)气-液-(固)纳米反应器的一个有前景且通用的平台。气-液-(固)纳米反应器可以规避当前先进多相反应器(如搅拌槽、滴流床和鼓泡塔)存在的局限性,这些反应器存在气体溶解度低和传质阻力的问题,并且可以以更低的成本和碳足迹使用气-液-(固)反应器。