Suppr超能文献

开发和验证一种机器学习模型,用于预测 1 型发作性睡病患者合并主要抑郁障碍的风险。

Development and validation of a machine learning model for prediction of comorbid major depression disorder among narcolepsy type 1.

机构信息

Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, PR China.

Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, PR China.

出版信息

Sleep Med. 2024 Jul;119:556-564. doi: 10.1016/j.sleep.2024.05.045. Epub 2024 May 23.

Abstract

BACKGROUND

Major depression disorder (MDD) forms a common psychiatric comorbidity among patients with narcolepsy type 1 (NT1), yet its impact on patients with NT1 is often overlooked by neurologists. Currently, there is a lack of effective methods for accurately predicting MDD in patients with NT1.

OBJECTIVE

This study utilized machine learning (ML) algorithms to identify critical variables and developed the prediction model for predicting MDD in patients with NT1.

METHODS

The study included 267 NT1 patients from four sleep centers. The diagnosis of comorbid MDD was based on Diagnostic and Statistical Manual of Mental Disorders fifth edition (DSM-5). ML models, including six full models and six compact models, were developed using a training set. The performance of these models was compared in the testing set, and the optimal model was evaluated in the testing set. Various evaluation metrics, such as Area under the receiver operating curve (AUC), precision-recall (PR) curve and calibration curve were employed to assess and compare the performance of the ML models. Model interpretability was demonstrated using SHAP.

RESULT

In the testing set, the logistic regression (LG) model demonstrated superior performance compared to other ML models based on evaluation metrics such as AUC, PR curve, and calibration curve. The top eight features used in the LG model, ranked by feature importance, included social impact scale (SIS) score, narcolepsy severity scale (NSS) score, total sleep time, body mass index (BMI), education years, age of onset, sleep efficiency, sleep latency.

CONCLUSION

The study yielded a straightforward and practical ML model for the early identification of MDD in patients with NT1. A web-based tool for clinical applications was developed, which deserves further verification in diverse clinical settings.

摘要

背景

重度抑郁症(MDD)是 1 型发作性睡病(NT1)患者常见的精神共病,但神经科医生往往忽视了其对 NT1 患者的影响。目前,缺乏有效方法来准确预测 NT1 患者的 MDD。

目的

本研究采用机器学习(ML)算法识别关键变量,并建立预测 NT1 患者 MDD 的预测模型。

方法

该研究纳入了来自四个睡眠中心的 267 例 NT1 患者。根据《精神障碍诊断与统计手册》第五版(DSM-5)诊断合并 MDD。使用训练集开发了 ML 模型,包括六个全模型和六个紧凑型模型。在测试集中比较这些模型的性能,在测试集中评估最优模型。使用接受者操作特征曲线下面积(AUC)、精度-召回率(PR)曲线和校准曲线等各种评估指标来评估和比较 ML 模型的性能。使用 SHAP 展示模型的可解释性。

结果

在测试集中,基于 AUC、PR 曲线和校准曲线等评估指标,逻辑回归(LG)模型的性能优于其他 ML 模型。LG 模型中使用的前八个特征(按特征重要性排序)包括社会影响量表(SIS)评分、嗜睡症严重程度量表(NSS)评分、总睡眠时间、体重指数(BMI)、受教育年限、发病年龄、睡眠效率、睡眠潜伏期。

结论

本研究为 NT1 患者 MDD 的早期识别提供了一种简单实用的 ML 模型。开发了一个用于临床应用的网络工具,值得在不同的临床环境中进一步验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验