Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy.
Core Facilities - Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genova 16147, Italy.
Neuron. 2024 Aug 7;112(15):2503-2523.e10. doi: 10.1016/j.neuron.2024.05.002. Epub 2024 May 28.
Down syndrome (DS) is the most common genetic cause of cognitive disability. However, it is largely unclear how triplication of a small gene subset may impinge on diverse aspects of DS brain physiopathology. Here, we took a multi-omic approach and simultaneously analyzed by RNA-seq and proteomics the expression signatures of two diverse regions of human postmortem DS brains. We found that the overexpression of triplicated genes triggered global expression dysregulation, differentially affecting transcripts, miRNAs, and proteins involved in both known and novel biological candidate pathways. Among the latter, we observed an alteration in RNA splicing, specifically modulating the expression of genes involved in cytoskeleton and axonal dynamics in DS brains. Accordingly, we found an alteration in axonal polarization in neurons from DS human iPSCs and mice. Thus, our study provides an integrated multilayer expression database capable of identifying new potential targets to aid in designing future clinical interventions for DS.
唐氏综合征(DS)是认知障碍最常见的遗传原因。然而,三倍体的一小部分基因如何影响 DS 大脑病理生理学的各个方面在很大程度上仍不清楚。在这里,我们采用了多组学方法,通过 RNA-seq 和蛋白质组学同时分析了两个人类死后 DS 大脑不同区域的表达特征。我们发现,三倍体基因的过表达引发了全局表达失调,差异影响了已知和新的生物候选途径中涉及的转录物、miRNA 和蛋白质。在后一种情况下,我们观察到 RNA 剪接的改变,特别是调节 DS 大脑中涉及细胞骨架和轴突动力学的基因的表达。因此,我们发现来自 DS 人类 iPSC 和小鼠的神经元中的轴突极化发生改变。因此,我们的研究提供了一个综合的多层表达数据库,能够识别新的潜在靶点,以帮助为 DS 设计未来的临床干预措施。