Suppr超能文献

农场研究对于验证基于过程的气候智能型农业模型的重要性。

Importance of on-farm research for validating process-based models of climate-smart agriculture.

作者信息

Ellis Elizabeth, Paustian Keith

机构信息

Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.

Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA.

出版信息

Carbon Balance Manag. 2024 May 29;19(1):16. doi: 10.1186/s13021-024-00260-6.

Abstract

Climate-smart agriculture can be used to build soil carbon stocks, decrease agricultural greenhouse gas (GHG) emissions, and increase agronomic resilience to climate pressures. The US recently declared its commitment to include the agricultural sector as part of an overall climate-mitigation strategy, and with this comes the need for robust, scientifically valid tools for agricultural GHG flux measurements and modeling. If agriculture is to contribute significantly to climate mitigation, practice adoption should be incentivized on as much land area as possible and mitigation benefits should be accurately quantified. Process-based models are parameterized on data from a limited number of long-term agricultural experiments, which may not fully reflect outcomes on working farms. Space-for-time substitution, paired studies, and long-term monitoring of SOC stocks and GHG emissions on commercial farms using a variety of climate-smart management systems can validate findings from long-term agricultural experiments and provide data for process-based model improvements. Here, we describe a project that worked collaboratively with commercial producers in the Midwest to directly measure and model the soil organic carbon (SOC) stocks of their farms at the field scale. We describe this study, and several unexpected challenges encountered, to facilitate further on-farm data collection and the creation of a secure database of on-farm SOC stock measurements.

摘要

气候智能型农业可用于增加土壤碳储量、减少农业温室气体排放,并增强农业对气候压力的适应能力。美国最近宣布致力于将农业部门纳入整体气候缓解战略的一部分,随之而来的是需要强大的、科学有效的工具来测量和模拟农业温室气体通量。如果农业要对气候缓解做出重大贡献,就应激励尽可能多的土地采用相关做法,并准确量化缓解效益。基于过程的模型是根据有限数量的长期农业实验数据进行参数化的,这些数据可能无法完全反映实际农场的情况。利用各种气候智能型管理系统对商业农场的土壤有机碳储量和温室气体排放进行时空置换、配对研究以及长期监测,可以验证长期农业实验的结果,并为改进基于过程的模型提供数据。在此,我们描述一个与美国中西部商业生产者合作的项目,该项目在田间尺度上直接测量和模拟其农场的土壤有机碳储量。我们描述了这项研究以及遇到的一些意外挑战,以促进进一步的农场数据收集,并创建一个安全的农场土壤有机碳储量测量数据库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee6c/11138037/2ee8bf91c93c/13021_2024_260_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验