Suppr超能文献

使用单步GBLUP对印度多品种群体进行基因组预测的策略。

Strategies for genomic predictions of an indicine multi-breed population using single-step GBLUP.

作者信息

Londoño-Gil Marisol, López-Correa Rodrigo, Aguilar Ignacio, Magnabosco Claudio Ulhoa, Hidalgo Jorge, Bussiman Fernando, Baldi Fernando, Lourenco Daniela

机构信息

Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil.

Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA.

出版信息

J Anim Breed Genet. 2025 Jan;142(1):43-56. doi: 10.1111/jbg.12882. Epub 2024 May 30.

Abstract

Brazilian livestock breeding programmes strive to enhance the genetics of beef cattle, with a strong emphasis on the Nellore breed, which has an extensive database and has achieved significant genetic progress in the last years. There are other indicine breeds that are economically important in Brazil; however, these breeds have more modest sets of phenotypes, pedigree and genotypes, slowing down their genetic progress as their predictions are less accurate. Combining several breeds in a multi-breed evaluation could help enhance predictions for those breeds with less information available. This study aimed to evaluate the feasibility of multi-breed, single-step genomic best linear unbiased predictor genomic evaluations for Nellore, Brahman, Guzerat and Tabapua. Multi-breed evaluations were contrasted to the single-breed ones. Data were sourced from the National Association of Breeders and Researchers of Brazil and included pedigree (4,207,516), phenotypic (328,748), and genomic (63,492) information across all breeds. Phenotypes were available for adjusted weight at 210 and 450 days of age, and scrotal circumference at 365 days of age. Various scenarios were evaluated to ensure pedigree and genomic information compatibility when combining different breeds, including metafounders (MF) or building the genomic relationship matrix with breed-specific allele frequencies. Scenarios were compared using the linear regression method for bias, dispersion and accuracy. The results showed that using multi-breed evaluations significantly improved accuracy, especially for smaller breeds like Guzerat and Tabapua. The validation statistics indicated that the MF approach provided accurate predictions, albeit with some bias. While single-breed evaluations tended to have lower accuracy, merging all breeds in multi-breed evaluations increased accuracy and reduced dispersion. This study demonstrates that multi-breed genomic evaluations are proper for indicine beef cattle breeds. The MF approach may be particularly beneficial for less-represented breeds, addressing limitations related to small reference populations and incompatibilities between G and A. By leveraging genomic information across breeds, breeders and producers can make more informed selection decisions, ultimately improving genetic gain in these cattle populations.

摘要

巴西的家畜育种计划致力于提升肉牛的遗传品质,其中内洛尔品种备受关注,该品种拥有广泛的数据库,且在过去几年取得了显著的遗传进展。巴西还有其他一些在经济上具有重要意义的瘤牛品种;然而,这些品种的表型、系谱和基因型数据相对较少,由于预测不够准确,其遗传进展较为缓慢。在多品种评估中结合多个品种有助于提高对那些可用信息较少的品种的预测准确性。本研究旨在评估对内洛尔、婆罗门、古泽拉特和塔巴普阿进行多品种单步基因组最佳线性无偏预测器基因组评估的可行性。将多品种评估与单品种评估进行了对比。数据来自巴西全国育种者和研究者协会,涵盖了所有品种的系谱(4,207,516条)、表型(328,748条)和基因组(63,492条)信息。表型数据包括210日龄和450日龄时的校正体重,以及365日龄时的阴囊周长。评估了各种方案,以确保在组合不同品种时系谱和基因组信息的兼容性,包括元祖先(MF)或使用特定品种的等位基因频率构建基因组关系矩阵。使用线性回归方法对各方案的偏差、离散度和准确性进行了比较。结果表明,采用多品种评估显著提高了准确性,尤其是对于像古泽拉特和塔巴普阿这样的较小品种。验证统计表明,MF方法提供了准确的预测,尽管存在一些偏差。虽然单品种评估的准确性往往较低,但在多品种评估中合并所有品种可提高准确性并减少离散度。本研究表明,多品种基因组评估适用于瘤牛品种。MF方法可能对代表性不足的品种特别有益,可解决与小参考群体以及G和A之间不兼容性相关的局限性。通过利用不同品种的基因组信息,育种者和生产者可以做出更明智的选择决策,最终提高这些牛群的遗传增益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9aa/11629074/123a70f8df20/JBG-142-43-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验