Gao Wei, Wang Xiao-Yan, Wang Xing-Jie, Huang Lei
Department of Heart Center, Tianjin Third Central Hospital, Tianjin, 300170, PR China.
Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, PR China.
Heliyon. 2024 May 15;10(10):e31247. doi: 10.1016/j.heliyon.2024.e31247. eCollection 2024 May 30.
The immune-inflammatory pathway plays a critical role in myocardial infarction development. However, few studies have systematically explored immune-related genes in relation to myocardial infarction prognosis using bioinformatic analysis. Our study aims to identify differentially expressed immune-related genes(DEIRGs) in ST-segment elevation myocardial infarction (STEMI) patients and investigate their association with clinical outcomes.
We conducted a systematic review of Gene Expression Omnibus datasets, selecting GSE49925, GSE60993, and GSE61144 for analysis. DEIRGs were identified using GEO2R and overlapped across the chosen datasets. Functional enrichment analysis elucidated the DEIRGs' biological functions and pathways. We established an optimal prognostic prediction model using LASSO penalized Cox proportional hazards regression. The signature's clinical utility was evaluated through survival analysis, ROC curve assessment, and decision curve analysis. Additionally, we constructed a prognostic nomogram for survival rate prediction. External validation was performed using our own plasma samples.
The resulting prognostic signature integrated two dysregulated DEIRGs ( and ) and two clinical variables (serum creatinine level and Gensini score). This signature effectively stratified patients into low- and high-risk groups. Survival analysis, ROC curve analysis, and decision curve analysis demonstrated its robust predictive performance and clinical utility within the first two years post-disease onset. External validation confirmed significant outcome differences between risk groups.
Our study establishes a prognostic signature that combines DEIRGs and clinical variables for STEMI patients. The signature exhibits promising predictive capabilities for patient stratification and survival risk assessment.
免疫炎症途径在心肌梗死的发展中起关键作用。然而,很少有研究使用生物信息学分析系统地探索与心肌梗死预后相关的免疫相关基因。我们的研究旨在识别ST段抬高型心肌梗死(STEMI)患者中差异表达的免疫相关基因(DEIRGs),并研究它们与临床结局的关联。
我们对基因表达综合数据库(Gene Expression Omnibus)数据集进行了系统综述,选择GSE49925、GSE60993和GSE61144进行分析。使用GEO2R识别DEIRGs,并在所选数据集中进行重叠分析。功能富集分析阐明了DEIRGs的生物学功能和途径。我们使用LASSO惩罚Cox比例风险回归建立了一个最佳预后预测模型。通过生存分析、ROC曲线评估和决策曲线分析评估该特征的临床效用。此外,我们构建了一个用于生存率预测的预后列线图。使用我们自己的血浆样本进行外部验证。
最终的预后特征整合了两个失调的DEIRGs( 和 )以及两个临床变量(血清肌酐水平和Gensini评分)。该特征有效地将患者分为低风险和高风险组。生存分析、ROC曲线分析和决策曲线分析表明,其在疾病发作后的头两年内具有强大的预测性能和临床效用。外部验证证实了风险组之间存在显著的结局差异。
我们的研究为STEMI患者建立了一个结合DEIRGs和临床变量的预后特征。该特征在患者分层和生存风险评估方面具有良好的预测能力。