Suppr超能文献

一种用于预测糖尿病合并冠状动脉疾病患者疾病进展的多模态列线图:整合临床、超声和血管造影数据。

A multimodal nomogram for predicting disease progression in diabetic patients with coronary artery disease: integrating clinical, ultrasound, and angiographic data.

作者信息

Chen Jing, Yue Ling, Wang Ruonan, Shu Sunjing, Liu Jin, Yan Mingmin, Ye Changkong, Shuang Liu

机构信息

Ultrasound Department, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen Peoples Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.

Department of Ultrasound, The Fourth Affiliated Hospital of China Medical University, Chongshandong Road, Huanggu District 4, Shenyang City, Liaoning Province, China.

出版信息

BMC Cardiovasc Disord. 2025 May 15;25(1):365. doi: 10.1186/s12872-025-04737-1.

Abstract

OBJECTIVE

The long-term prognosis of diabetic patients with coronary artery disease (CAD) is influenced by various clinical variables and biomarkers. This study aimed to develop and validate a prognostic model that integrates clinical, echocardiographic, and angiographic data to predict disease progression.

METHODS

We retrospectively analyzed 396 diabetic CAD patients with a 3-year follow-up starting from their first coronary angiography. Outcome variables included recurrent myocardial infarction, unstable angina rehospitalization, heart failure, ischemic stroke, cardiovascular death, and all-cause death. Non-progression was defined as the absence of these events. Variables included clinical data, echocardiographic parameters, coronary angiography results, and biomarkers. A multivariate Cox regression model was developed, incorporating key factors (coronary lesion number, myocardial infarction history, ejection fraction, and creatinine).

RESULTS

Multivariate analysis identified the number of obstructed coronary arteries, history of myocardial infarction, ejection fraction, and creatinine level as independent predictors of disease progression. The model showed good predictive performance, with AUC values of 0.742, 0.782, and 0.816 at 3, 6, and 9 months, respectively. The C-index was 0.669 (95% CI: 0.5959-0.7196) in the training set and 0.695 (95% CI: 0.5781-0.7436) in the validation set, reflecting consistent predictive performance. Calibration curves showed excellent agreement between predicted and observed outcomes.

CONCLUSION

We developed and validated a practical nomogram integrating clinical, biochemical, and imaging data to predict short-term disease progression in diabetic patients with CAD. This tool may assist clinicians in early risk stratification and individualized management planning.

摘要

目的

糖尿病合并冠状动脉疾病(CAD)患者的长期预后受多种临床变量和生物标志物影响。本研究旨在建立并验证一个整合临床、超声心动图和血管造影数据的预后模型,以预测疾病进展。

方法

我们回顾性分析了396例糖尿病CAD患者,从其首次冠状动脉造影开始进行为期3年的随访。结局变量包括复发性心肌梗死、不稳定型心绞痛再入院、心力衰竭、缺血性卒中、心血管死亡和全因死亡。无进展定义为未发生这些事件。变量包括临床数据、超声心动图参数、冠状动脉造影结果和生物标志物。建立了一个多变量Cox回归模型,纳入关键因素(冠状动脉病变数量、心肌梗死病史、射血分数和肌酐)。

结果

多变量分析确定冠状动脉阻塞数量、心肌梗死病史、射血分数和肌酐水平为疾病进展的独立预测因素。该模型显示出良好的预测性能,在3、6和9个月时的AUC值分别为0.742、0.782和0.816。训练集中的C指数为0.669(95%CI:0.5959 - 0.7196),验证集中为0.695(95%CI:0.5781 - 0.7436),反映出一致的预测性能。校准曲线显示预测结果与观察结果之间具有良好的一致性。

结论

我们建立并验证了一个实用的列线图,整合临床、生化和影像数据以预测糖尿病CAD患者的短期疾病进展。该工具可协助临床医生进行早期风险分层和个体化管理规划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a264/12079951/87a4bff298a4/12872_2025_4737_Fig1_HTML.jpg

相似文献

3
A simple risk score model for predicting contrast-induced nephropathy after coronary angiography in patients with diabetes.
Clin Exp Nephrol. 2019 Jul;23(7):969-981. doi: 10.1007/s10157-019-01739-0. Epub 2019 May 2.
8
Nomogram based on virtual hyperemic pullback pressure gradients for predicting the suboptimal post-PCI QFR outcome after stent implantation.
Int J Cardiovasc Imaging. 2024 Dec;40(12):2469-2479. doi: 10.1007/s10554-024-03253-1. Epub 2024 Oct 12.

本文引用的文献

3
A comprehensive guide on the optimal timing of PCI in the setting of acute coronary syndrome: An updated meta-analysis.
Int J Cardiol. 2024 Apr 1;400:131774. doi: 10.1016/j.ijcard.2024.131774. Epub 2024 Jan 10.
7
Prognostic value of insulin resistance and hyperglycemia biomarkers for long-term risks of cardiometabolic outcomes.
J Diabetes Complications. 2023 Sep;37(9):108583. doi: 10.1016/j.jdiacomp.2023.108583. Epub 2023 Aug 2.
8
Design and rationale of randomized evaluation of decreased usage of beta-blockers after acute myocardial infarction (REDUCE-AMI).
Eur Heart J Cardiovasc Pharmacother. 2023 Feb 2;9(2):192-197. doi: 10.1093/ehjcvp/pvac070.
9
Biomarker-Based Prediction of Recurrent Ischemic Events in Patients With Acute Coronary Syndromes.
J Am Coll Cardiol. 2022 Nov 1;80(18):1735-1747. doi: 10.1016/j.jacc.2022.08.767.
10
Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association.
Circulation. 2022 Feb 22;145(8):e153-e639. doi: 10.1161/CIR.0000000000001052. Epub 2022 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验