Suppr超能文献

代谢通量调节尿路致病性. 的生长转变和抗生素耐受。

Metabolic flux regulates growth transitions and antibiotic tolerance in uropathogenic .

机构信息

Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA.

Department of Natural Science and Environment, Centre for Mathematical Modeling - Human Health and Disease, University of Roskilde, Roskilde, Denmark.

出版信息

J Bacteriol. 2024 Jun 20;206(6):e0016224. doi: 10.1128/jb.00162-24. Epub 2024 May 30.

Abstract

UNLABELLED

Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic (UPEC) may enter a quiescent state that enables them to reemerge after the completion of successful antibiotic treatment. Many clinical isolates, including the well-characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state that is reversible with cues, including peptidoglycan-derived peptides and amino acids. Here, we show that quiescent UPEC is antibiotic tolerant and demonstrate that metabolic flux in the tricarboxylic acid (TCA) cycle regulates the UPEC quiescent state via succinyl-CoA. We also demonstrate that the transcriptional regulator complex integration host factor and the FtsZ-interacting protein ZapE, which is important for division during stress, are essential for UPEC to enter the quiescent state. Notably, in addition to engaging FtsZ and late-stage cell division proteins, ZapE also interacts directly with TCA cycle enzymes in bacterial two-hybrid assays. We report direct interactions between the succinate dehydrogenase complex subunit SdhC, the late-stage cell division protein FtsN, and ZapE. These interactions may enable communication between oxidative metabolism and the cell division machinery in UPEC. Moreover, these interactions are conserved in an K-12 strain. This work suggests that there is coordination among the two fundamental and essential pathways that regulate overall growth, quiescence, and antibiotic susceptibility.

IMPORTANCE

Uropathogenic (UPEC) are the leading cause of urinary tract infections (UTIs). Upon invasion into bladder epithelial cells, UPEC establish quiescent intracellular reservoirs that may lead to antibiotic tolerance and recurrent UTIs. Here, we demonstrate using an system that quiescent UPEC cells are tolerant to ampicillin and have decreased metabolism characterized by succinyl-CoA limitation. We identify the global regulator integration host factor complex and the cell division protein ZapE as critical modifiers of quiescence and antibiotic tolerance. Finally, we show that ZapE interacts with components of both the cell division machinery and the tricarboxylic acid cycle, and this interaction is conserved in non-pathogenic , establishing a novel link between cell division and metabolism.

摘要

未加标签

减少生长和限制新陈代谢是使细菌能够在暴露于环境压力和抗生素时存活的策略。在感染过程中,尿路致病性 (UPEC)可能进入休眠状态,使其能够在成功的抗生素治疗完成后重新出现。许多临床分离株,包括特征良好的 UPEC 菌株 CFT073,也进入了依赖代谢物的休眠状态,这种状态可以通过肽聚糖衍生肽和氨基酸等信号逆转。在这里,我们表明休眠的 UPEC 对抗生素具有耐受性,并证明三羧酸(TCA)循环中的代谢通量通过琥珀酰辅酶 A 调节 UPEC 的休眠状态。我们还证明了转录调节因子复合体整合宿主因子和 FtsZ 相互作用蛋白 ZapE,这对于应激期间的分裂很重要,对于 UPEC 进入休眠状态是必不可少的。值得注意的是,ZapE 除了与 FtsZ 和晚期细胞分裂蛋白结合外,还在细菌双杂交测定中直接与 TCA 循环酶相互作用。我们报告了琥珀酸脱氢酶复合物亚基 SdhC、晚期细胞分裂蛋白 FtsN 和 ZapE 之间的直接相互作用。这些相互作用可能使 UPEC 中的氧化代谢和细胞分裂机制之间能够进行通信。此外,这些相互作用在 K-12 菌株中是保守的。这项工作表明,调节整体生长、休眠和抗生素敏感性的两条基本和必要途径之间存在协调。

重要性

尿路致病性 (UPEC)是尿路感染(UTI)的主要原因。在入侵膀胱上皮细胞后,UPEC 建立休眠的细胞内储库,这可能导致抗生素耐药性和复发性 UTI。在这里,我们使用系统证明休眠的 UPEC 细胞对抗生素氨苄西林具有耐受性,并且代谢特征为琥珀酰辅酶 A 限制。我们确定全局调节剂整合宿主因子复合体和细胞分裂蛋白 ZapE 是休眠和抗生素耐受性的关键调节剂。最后,我们表明 ZapE 与细胞分裂机制和三羧酸循环的成分相互作用,这种相互作用在非致病性 中保守,在细胞分裂和代谢之间建立了新的联系。

相似文献

1
Metabolic flux regulates growth transitions and antibiotic tolerance in uropathogenic .
J Bacteriol. 2024 Jun 20;206(6):e0016224. doi: 10.1128/jb.00162-24. Epub 2024 May 30.
2
Metabolic flux regulates growth transitions and antibiotic tolerance in uropathogenic .
bioRxiv. 2023 May 10:2023.05.09.540013. doi: 10.1101/2023.05.09.540013.
6
Genetic requirements for uropathogenic proliferation in the bladder cell infection cycle.
mSystems. 2024 Oct 22;9(10):e0038724. doi: 10.1128/msystems.00387-24. Epub 2024 Sep 17.
8
Iron limitation induces motility in uropathogenic CFT073 partially through action of LpdA.
mBio. 2024 Jul 17;15(7):e0104824. doi: 10.1128/mbio.01048-24. Epub 2024 Jun 14.
9
Plant phenolics inhibit focal adhesion kinase and suppress host cell invasion by uropathogenic .
Infect Immun. 2024 May 7;92(5):e0008024. doi: 10.1128/iai.00080-24. Epub 2024 Mar 27.

本文引用的文献

2
Assembly and architecture of Escherichia coli divisome proteins FtsA and FtsZ.
J Biol Chem. 2022 Mar;298(3):101663. doi: 10.1016/j.jbc.2022.101663. Epub 2022 Jan 29.
3
The Role of Integration Host Factor in Escherichia coli Persister Formation.
mBio. 2022 Feb 22;13(1):e0342021. doi: 10.1128/mbio.03420-21. Epub 2022 Jan 4.
4
The Stress-Active Cell Division Protein ZapE Alters FtsZ Filament Architecture to Facilitate Division in .
Front Microbiol. 2021 Sep 27;12:733085. doi: 10.3389/fmicb.2021.733085. eCollection 2021.
5
Antibiotic persistence and tolerance: not just one and the same.
Curr Opin Microbiol. 2021 Dec;64:76-81. doi: 10.1016/j.mib.2021.09.017. Epub 2021 Oct 9.
7
Clinically relevant mutations in core metabolic genes confer antibiotic resistance.
Science. 2021 Feb 19;371(6531). doi: 10.1126/science.aba0862.
8
Antibiotic resistance and persistence-Implications for human health and treatment perspectives.
EMBO Rep. 2020 Dec 3;21(12):e51034. doi: 10.15252/embr.202051034. Epub 2020 Dec 8.
9
Combating Antibiotic Tolerance Through Activating Bacterial Metabolism.
Front Microbiol. 2020 Oct 22;11:577564. doi: 10.3389/fmicb.2020.577564. eCollection 2020.
10
Antibiotic tolerance.
PLoS Pathog. 2020 Oct 15;16(10):e1008892. doi: 10.1371/journal.ppat.1008892. eCollection 2020 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验