Zou Yuqing, Zhang Zeyu, Wang Chunwei, Cheng Yifan, Wang Chen, Sun Kaiwen, Zhang Wenjie, Suo Peng, Lin Xian, Ma Hong, Leng Yuxin, Liu Weimin, Du Juan, Ma Guohong
Department of Physics, Shanghai University, Shanghai 200444, China.
School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
ACS Appl Mater Interfaces. 2024 Jun 12;16(23):30589-30597. doi: 10.1021/acsami.4c05511. Epub 2024 May 30.
Vertical van der Waals heterostructures composed of graphene (Gr) and transition metal dichalcogenides (TMDs) have created a fascinating platform for exploring optical and electronic properties in the two-dimensional limit. Numerous studies have focused on Gr/TMDs heterostructures to elucidate the underlying mechanisms of charge-energy transfer, quasiparticle formation, and relaxation following optical excitation. Nevertheless, a comprehensive understanding of interfacial charge separation and subsequent dynamics in graphene-based heterostructures remains elusive. Here, we have investigated the carrier dynamics of Gr-MoS heterostructures (including Gr/MoS and MoS/Gr stacking sequences) grown on a fused silica substrate under varying photoexcitation energies by comprehensive ultrafast means, including time-resolved terahertz (THz) spectroscopy, THz emission spectroscopy, and transient absorption spectroscopy. Our findings highlight the impact of the substrate electric field on the efficiency of modulating the interfacial charge transfer (CT). Specifically, the optical excitation in Gr/MoS generates thermal electron injection from the graphene layer into the MoS layer with photon energy well below A-exciton of MoS, whereas the interfacial CT in the MoS/Gr is blocked by the electric field of the substrate. In turn, photoexcitation of the A exciton above leads to hole transfer from MoS to graphene, which occurs for both Gr-MoS heterostructures with opposite stacking orders, resulting in the opposite orientations of the interfacial photocurrent, as directly demonstrated by the out-of-phase THz emission. Moreover, we demonstrate that the recombination time of interfacial exciton is approximately ∼18 ps, whereas the defect-assisted interfacial recombination occurs on a time scale of ∼ns. This study provides valuable insights into the interplay between interfacial CT, substrate effects, and defect engineering in Gr-TMDs heterostructures, thereby facilitating the development of next-generation optoelectronic devices.
由石墨烯(Gr)和过渡金属二硫属化物(TMDs)组成的垂直范德华异质结构为在二维极限下探索光学和电子特性创造了一个引人入胜的平台。众多研究聚焦于Gr/TMDs异质结构,以阐明光激发后电荷 - 能量转移、准粒子形成和弛豫的潜在机制。然而,对基于石墨烯的异质结构中界面电荷分离及后续动力学的全面理解仍然难以捉摸。在此,我们通过综合超快手段,包括时间分辨太赫兹(THz)光谱、THz发射光谱和瞬态吸收光谱,研究了在熔融石英衬底上生长的Gr - MoS异质结构(包括Gr/MoS和MoS/Gr堆叠顺序)在不同光激发能量下的载流子动力学。我们的研究结果突出了衬底电场对调节界面电荷转移(CT)效率的影响。具体而言,Gr/MoS中的光激发在光子能量远低于MoS的A激子时,会产生从石墨烯层到MoS层的热电子注入,而MoS/Gr中的界面CT被衬底电场阻断。反过来,上述A激子的光激发会导致空穴从MoS转移到石墨烯,这在具有相反堆叠顺序的两种Gr - MoS异质结构中都会发生,导致界面光电流的方向相反,这通过异相THz发射直接得到证明。此外,我们证明界面激子的复合时间约为18 ps,而缺陷辅助的界面复合发生在约ns的时间尺度上。这项研究为Gr - TMDs异质结构中界面CT、衬底效应和缺陷工程之间的相互作用提供了有价值的见解,从而推动下一代光电器件的发展。