Suppr超能文献

石墨烯与过渡金属二硫属化物范德华异质结构中界面电荷转移的组成工程

Compositional engineering of interfacial charge transfer in van der Waals heterostructures of graphene and transition metal dichalcogenides.

作者信息

Wen Guanzhao, Fu Shuai, Bonn Mischa, Wang Hai I

机构信息

Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.

Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein1, 3584 CC, Utrecht, the Netherlands.

出版信息

J Chem Phys. 2024 Aug 7;161(5). doi: 10.1063/5.0210906.

Abstract

Owing to their unique optical and electronic properties, vertical van der Waals heterostructures (vdWHs) have attracted considerable attention in optoelectronic applications, such as photodetection, light harvesting, and light-emitting diodes. To fully harness these properties, it is crucial to understand the interfacial charge transfer (CT) and recombination dynamics across vdWHs. However, the effects of interfacial energetics and defect states on interfacial CT and recombination processes in graphene-transition metal dichalcogenide (Gr-TMD) vdWHs remain debated. Here, we investigate the interfacial CT dynamics in Gr-TMD vdWHs with different chemical compositions (W, Mo, S, and Se) and tunable interfacial energetics. We demonstrate, using ultrafast terahertz spectroscopy, that while the photo-induced electron transfer direction is universal with graphene donating electrons to TMDs, its efficiency is chalcogen-dependent: the CT efficiency of S atom-based vdWHs is 3-5 times higher than that of Se-based vdWHs thanks to the lower Schottky barrier present in S-based vdWHs. In contrast, the electron back transfer process from TMD to Gr, which defines the charge separation time, is transition metal-dependent and dominated by the mid-gap defect level of TMDs: W transition metal-based vdWHs possess extremely long charge separation, well beyond 1 ns, which is significantly longer than Mo-based vdWHs with only 10 s of ps charge separation. This difference can be traced to the much deeper mid-gap defect reported in W-based TMDs compared to Mo-based ones, resulting in modified energetics for the back electron transfer from the trapped states to graphene. Our results shed light on the role of interfacial energetics and defects by tailoring chemical compositions of TMDs on the interfacial CT and recombination dynamics in Gr-TMD vdWHs, which is pivotal for optimizing optoelectronic devices, particularly in the field of photodetection.

摘要

由于其独特的光学和电子特性,垂直范德华异质结构(vdWHs)在光电应用中引起了广泛关注,如光电探测、光捕获和发光二极管。为了充分利用这些特性,了解vdWHs界面电荷转移(CT)和复合动力学至关重要。然而,石墨烯-过渡金属二硫属化物(Gr-TMD)vdWHs中界面能量学和缺陷态对界面CT和复合过程的影响仍存在争议。在此,我们研究了具有不同化学成分(W、Mo、S和Se)且界面能量可调节的Gr-TMD vdWHs中的界面CT动力学。我们利用超快太赫兹光谱证明,虽然光致电子转移方向具有普遍性,即石墨烯向TMDs提供电子,但其效率与硫族元素有关:基于S原子的vdWHs的CT效率比基于Se的vdWHs高3至5倍,这得益于基于S的vdWHs中存在较低的肖特基势垒。相比之下,从TMD到Gr的电子反向转移过程决定了电荷分离时间,该过程与过渡金属有关,且由TMDs的中间能隙缺陷能级主导:基于W过渡金属的vdWHs具有极长的电荷分离时间,远超过1 ns,这明显长于基于Mo的vdWHs,后者的电荷分离时间仅为10 ps左右。这种差异可归因于与基于Mo的TMDs相比,基于W的TMDs中报道的中间能隙缺陷更深,从而导致从捕获态到石墨烯的反向电子转移的能量学发生改变。我们的结果通过调整TMDs的化学成分,揭示了界面能量学和缺陷在Gr-TMD vdWHs的界面CT和复合动力学中的作用,这对于优化光电器件,特别是在光电探测领域至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验