IEEE Trans Biomed Eng. 2024 Oct;71(10):3024-3031. doi: 10.1109/TBME.2024.3407059. Epub 2024 Sep 19.
Freezing of Gait (FOG) is prevalent in people with Parkinson's disease (PD) and severely disrupts mobility. Detecting the exact boundaries of FOG episodes may facilitate new technologies in "breaking" FOG in real-time. This study investigates the performance of automatic device-based FOG detection.
Eight machine-learning classifiers (including Neural Networks, Ensemble methods, and Support Vector Machines) were developed using (i) accelerometer and (ii) combined accelerometer and gyroscope data from a waist-worn device. While wearing the device, 107 people with PD completed mobility tasks designed to elicit FOG. Two clinicians independently annotated exact FOG episodes using synchronized video and a flowchart algorithm based on international guidelines. Device-detected FOG episodes were compared to annotated episodes using 10-fold cross-validation and Interclass Correlation Coefficients (ICC) for agreement.
Development used 50,962 windows of data and annotated activities (>10 hours). Strong agreement between clinicians for precise FOG episodes was observed (90% sensitivity, 92% specificity, and ICC1,1 = 0.97 for total FOG duration). Device performance varied by method, complexity, and cost matrix. The Neural Network using 67 accelerometer features achieved high sensitivity to FOG (89% sensitivity, 81% specificity, and ICC1,1 = 0.83) and stability (validation loss 5%).
The waist-worn device consistently reported accurate detection of precise FOG episodes and compared well to more complex systems. The strong clinician agreement indicates room for improvement in future device-based FOG detection.
This study may enhance PD care by reducing reliance on visual FOG inspection, demonstrating that high sensitivity in automatic FOG detection is achievable.
冻结步态(FOG)在帕金森病(PD)患者中很常见,严重影响了他们的行动能力。准确检测 FOG 发作的边界可能有助于开发实时“打破”FOG 的新技术。本研究旨在评估基于自动设备的 FOG 检测方法的性能。
使用(i)佩戴于腰部的设备中的加速度计数据和(ii)加速度计和陀螺仪组合数据,开发了 8 种机器学习分类器(包括神经网络、集成方法和支持向量机)。107 名 PD 患者在佩戴设备的情况下完成了旨在诱发 FOG 的移动任务。两名临床医生使用同步视频和基于国际指南的流程图算法,独立对 FOG 发作进行精确标注。使用 10 折交叉验证和组内相关系数(ICC)比较设备检测到的 FOG 发作与标注发作之间的一致性。
开发使用了 50962 个数据窗和>10 小时的标注活动数据。临床医生对 FOG 发作的精确标注具有很强的一致性(总 FOG 持续时间的敏感度为 90%,特异性为 92%,ICC1,1 为 0.97)。设备的性能因方法、复杂性和成本矩阵而异。使用 67 个加速度计特征的神经网络对 FOG 具有较高的敏感性(敏感度为 89%,特异性为 81%,ICC1,1 为 0.83)和稳定性(验证损失为 5%)。
腰部佩戴的设备能够持续准确地报告 FOG 发作,且性能与更复杂的系统相当。临床医生之间的高度一致性表明,未来在基于设备的 FOG 检测方面还有改进的空间。
本研究通过减少对视觉 FOG 检查的依赖,为 PD 患者的护理提供了支持,证明了在自动 FOG 检测中实现高敏感性是可行的。