文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

帕金森病的数字生物标志物:文献计量分析与步态冻结深度学习的范围综述

Digital Biomarkers for Parkinson Disease: Bibliometric Analysis and a Scoping Review of Deep Learning for Freezing of Gait.

作者信息

Qi Wenhao, Shen Shiying, Dong Chaoqun, Zhao Mengjiao, Zang Shuaiqi, Zhu Xiaohong, Li Jiaqi, Wang Bin, Shi Yankai, Dong Yongze, Shen Huajuan, Kang Junling, Lu Xiaodong, Jiang Guowei, Du Jingsong, Shu Eryi, Zhou Qingbo, Wang Jinghua, Cao Shihua

机构信息

School of Nursing, Hangzhou Normal University, Hangzhou, China.

Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.

出版信息

J Med Internet Res. 2025 May 20;27:e71560. doi: 10.2196/71560.


DOI:10.2196/71560
PMID:40392578
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12134701/
Abstract

BACKGROUND: With the rapid development of digital biomarkers in Parkinson disease (PD) research, it has become increasingly important to explore the current research trends and key areas of focus. OBJECTIVE: This study aimed to comprehensively evaluate the current status, hot spots, and future trends of global PD biomarker research, and provide a systematic review of deep learning models for freezing of gait (FOG) digital biomarkers. METHODS: This study used bibliometric analysis based on the Web of Science Core Collection database to conduct a comprehensive analysis of the multidimensional landscape of Parkinson digital biomarkers. After identifying research hot spots, the study also followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines for a scoping review of deep learning models for FOG from 5 databases: Web of Science, PubMed, IEEE Xplore, Embase, and Google Scholar. RESULTS: A total of 750 studies were included in the bibliometric analysis, and 40 studies were included in the scoping review. The analysis revealed a growing number of related publications, with 3700 researchers contributing. Neurology had the highest average annual participation rate (12.46/19, 66%). The United States contributed the most research (192/1171, 16.4%), with 210 participating institutions, which was the highest among all countries. In the study of deep learning models for FOG, the average accuracy of the models was 0.92, sensitivity was 0.88, specificity was 0.90, and area under the curve was 0.91. In addition, 31 (78%) studies indicated that the best models were primarily convolutional neural networks or convolutional neural networks-based architectures. CONCLUSIONS: Research on digital biomarkers for PD is currently at a stable stage of development, with widespread global interest from countries, institutions, and researchers. However, challenges remain, including insufficient interdisciplinary and interinstitutional collaboration, as well as a lack of corporate funding for related projects. Current research trends primarily focus on motor-related studies, particularly FOG monitoring. However, deep learning models for FOG still lack external validation and standardized performance reporting. Future research will likely progress toward deeper applications of artificial intelligence, enhanced interinstitutional collaboration, comprehensive analysis of different data types, and the exploration of digital biomarkers for a broader range of Parkinson symptoms. TRIAL REGISTRATION: Open Science Foundation (OSF Registries) OSF.IO/RG8Y3; https://doi.org/10.17605/OSF.IO/RG8Y3.

摘要

背景:随着帕金森病(PD)研究中数字生物标志物的快速发展,探索当前的研究趋势和重点领域变得越来越重要。 目的:本研究旨在全面评估全球PD生物标志物研究的现状、热点和未来趋势,并对步态冻结(FOG)数字生物标志物的深度学习模型进行系统综述。 方法:本研究使用基于Web of Science核心合集数据库的文献计量分析方法,对帕金森病数字生物标志物的多维格局进行综合分析。在确定研究热点后,本研究还遵循PRISMA-ScR(系统评价和Meta分析扩展的范围综述优先报告项目)指南,对来自Web of Science、PubMed、IEEE Xplore、Embase和谷歌学术这5个数据库的FOG深度学习模型进行范围综述。 结果:文献计量分析共纳入750项研究,范围综述纳入40项研究。分析显示相关出版物数量不断增加,有3700名研究人员参与。神经病学领域的平均年参与率最高(12.46/19,66%)。美国的研究贡献最多(192/1171,16.4%),有210个参与机构,在所有国家中位居榜首。在FOG深度学习模型的研究中,模型的平均准确率为0.92,灵敏度为0.88,特异度为0.90,曲线下面积为0.91。此外,31项(78%)研究表明,最佳模型主要是卷积神经网络或基于卷积神经网络的架构。 结论:PD数字生物标志物的研究目前处于稳定发展阶段,受到各国、机构和研究人员的广泛关注。然而,挑战依然存在,包括跨学科和跨机构合作不足,以及相关项目缺乏企业资金支持。当前的研究趋势主要集中在与运动相关的研究,特别是FOG监测。然而,FOG的深度学习模型仍缺乏外部验证和标准化的性能报告。未来的研究可能会朝着人工智能的更深入应用、加强机构间合作、对不同数据类型的综合分析以及探索更广泛帕金森症状的数字生物标志物方向发展。 试验注册:开放科学基金会(OSF注册库)OSF.IO/RG8Y3;https://doi.org/10.17605/OSF.IO/RG8Y3 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/40383ad03674/jmir_v27i1e71560_fig19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/8134a28c1ccc/jmir_v27i1e71560_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/e950b1e9594c/jmir_v27i1e71560_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/68af27f311e1/jmir_v27i1e71560_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/7b1094527f8f/jmir_v27i1e71560_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/5c58ab23da75/jmir_v27i1e71560_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/096bd4f366b1/jmir_v27i1e71560_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/eb6280c37947/jmir_v27i1e71560_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/a36f7ef6e90a/jmir_v27i1e71560_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/c2a243cd4bdf/jmir_v27i1e71560_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/3de940eaa98f/jmir_v27i1e71560_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/d401ef772d30/jmir_v27i1e71560_fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/ae152704664f/jmir_v27i1e71560_fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/fb5fc2acc513/jmir_v27i1e71560_fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/3b5b2a12d361/jmir_v27i1e71560_fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/0e83c6c825c3/jmir_v27i1e71560_fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/3882aed5cdc9/jmir_v27i1e71560_fig16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/ece299225db4/jmir_v27i1e71560_fig17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/da4c8656913f/jmir_v27i1e71560_fig18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/40383ad03674/jmir_v27i1e71560_fig19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/8134a28c1ccc/jmir_v27i1e71560_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/e950b1e9594c/jmir_v27i1e71560_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/68af27f311e1/jmir_v27i1e71560_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/7b1094527f8f/jmir_v27i1e71560_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/5c58ab23da75/jmir_v27i1e71560_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/096bd4f366b1/jmir_v27i1e71560_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/eb6280c37947/jmir_v27i1e71560_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/a36f7ef6e90a/jmir_v27i1e71560_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/c2a243cd4bdf/jmir_v27i1e71560_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/3de940eaa98f/jmir_v27i1e71560_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/d401ef772d30/jmir_v27i1e71560_fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/ae152704664f/jmir_v27i1e71560_fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/fb5fc2acc513/jmir_v27i1e71560_fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/3b5b2a12d361/jmir_v27i1e71560_fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/0e83c6c825c3/jmir_v27i1e71560_fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/3882aed5cdc9/jmir_v27i1e71560_fig16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/ece299225db4/jmir_v27i1e71560_fig17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/da4c8656913f/jmir_v27i1e71560_fig18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a29/12134701/40383ad03674/jmir_v27i1e71560_fig19.jpg

相似文献

[1]
Digital Biomarkers for Parkinson Disease: Bibliometric Analysis and a Scoping Review of Deep Learning for Freezing of Gait.

J Med Internet Res. 2025-5-20

[2]
Mapping Knowledge Landscapes and Emerging Trends in AI for Dementia Biomarkers: Bibliometric and Visualization Analysis.

J Med Internet Res. 2024-8-8

[3]
Application of artificial intelligence in palliative care: a bibliometric analysis of research hotspots and trends.

Front Med (Lausanne). 2025-5-21

[4]
Use of Digital Health Technologies for Dementia Care: Bibliometric Analysis and Report.

JMIR Ment Health. 2025-2-10

[5]
Knowledge mapping of freezing of gait in Parkinson's disease: a bibliometric analysis.

Front Neurosci. 2024-9-9

[6]
An Exploration of Wearable Device Features Used in UK Hospital Parkinson Disease Care: Scoping Review.

J Med Internet Res. 2023-8-18

[7]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[8]
Approaches for the Use of AI in Workplace Health Promotion and Prevention: Systematic Scoping Review.

JMIR AI. 2024-8-20

[9]
Artificial Intelligence Applications to Measure Food and Nutrient Intakes: Scoping Review.

J Med Internet Res. 2024-11-28

[10]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

本文引用的文献

[1]
Deep learning-based detection of affected body parts in Parkinson's disease and freezing of gait using time-series imaging.

Sci Rep. 2024-10-10

[2]
Integrating digital gait data with metabolomics and clinical data to predict outcomes in Parkinson's disease.

NPJ Digit Med. 2024-9-6

[3]
Digital biomarkers for precision diagnosis and monitoring in Parkinson's disease.

NPJ Digit Med. 2024-8-21

[4]
Mapping Knowledge Landscapes and Emerging Trends in AI for Dementia Biomarkers: Bibliometric and Visualization Analysis.

J Med Internet Res. 2024-8-8

[5]
Detection of freezing of gait in Parkinson's disease from foot-pressure sensing insoles using a temporal convolutional neural network.

Front Aging Neurosci. 2024-7-18

[6]
Automatic Detection and Assessment of Freezing of Gait Manifestations.

IEEE Trans Neural Syst Rehabil Eng. 2024

[7]
Prediction of Freezing of Gait in Parkinson's disease based on multi-channel time-series neural network.

Artif Intell Med. 2024-8

[8]
Digital biomarkers for non-motor symptoms in Parkinson's disease: the state of the art.

NPJ Digit Med. 2024-7-11

[9]
Intelligent diagnosis system based on artificial intelligence models for predicting freezing of gait in Parkinson's disease.

Front Med (Lausanne). 2024-6-20

[10]
Wearable sensor-based quantitative gait analysis in Parkinson's disease patients with different motor subtypes.

NPJ Digit Med. 2024-6-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索