Department of Medicine, Columbia University Irving Medical Center and the Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
JNCI Cancer Spectr. 2024 Jul 1;8(4). doi: 10.1093/jncics/pkae042.
Deep learning-based mammographic evaluations could noninvasively assess response to breast cancer chemoprevention. We evaluated change in a convolutional neural network-based breast cancer risk model applied to mammograms among women enrolled in SWOG S0812, which randomly assigned 208 premenopausal high-risk women to receive oral vitamin D3 20 000 IU weekly or placebo for 12 months. We applied the convolutional neural network model to mammograms collected at baseline (n = 109), 12 months (n = 97), and 24 months (n = 67) and compared changes in convolutional neural network-based risk score between treatment groups. Change in convolutional neural network-based risk score was not statistically significantly different between vitamin D and placebo groups at 12 months (0.005 vs 0.002, P = .875) or at 24 months (0.020 vs 0.001, P = .563). The findings are consistent with the primary analysis of S0812, which did not demonstrate statistically significant changes in mammographic density with vitamin D supplementation compared with placebo. There is an ongoing need to evaluate biomarkers of response to novel breast cancer chemopreventive agents.
深度学习为基础的乳腺评估可以非侵入性地评估乳腺癌化学预防的反应。我们评估了应用于 SWOG S0812 中接受研究的女性的乳腺 X 光片中基于卷积神经网络的乳腺癌风险模型的变化,该研究随机分配 208 名绝经前高危女性接受每周口服维生素 D3 20000IU 或安慰剂治疗 12 个月。我们将卷积神经网络模型应用于基线(n=109)、12 个月(n=97)和 24 个月(n=67)收集的乳腺 X 光片中,并比较了治疗组之间基于卷积神经网络的风险评分的变化。在 12 个月(0.005 对 0.002,P=0.875)或 24 个月(0.020 对 0.001,P=0.563)时,维生素 D 和安慰剂组之间基于卷积神经网络的风险评分的变化没有统计学意义上的差异。这些发现与 S0812 的主要分析一致,即与安慰剂相比,维生素 D 补充剂并未显示乳腺密度有统计学意义上的变化。目前需要评估新型乳腺癌化学预防药物反应的生物标志物。