Suppr超能文献

SWOG S0812 中维生素 D 补充对基于深度学习的乳腺 X 线摄影评估的影响。

Effects of vitamin D supplementation on a deep learning-based mammographic evaluation in SWOG S0812.

机构信息

Department of Medicine, Columbia University Irving Medical Center and the Herbert Irving Comprehensive Cancer Center, New York, NY, USA.

Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.

出版信息

JNCI Cancer Spectr. 2024 Jul 1;8(4). doi: 10.1093/jncics/pkae042.

Abstract

Deep learning-based mammographic evaluations could noninvasively assess response to breast cancer chemoprevention. We evaluated change in a convolutional neural network-based breast cancer risk model applied to mammograms among women enrolled in SWOG S0812, which randomly assigned 208 premenopausal high-risk women to receive oral vitamin D3 20 000 IU weekly or placebo for 12 months. We applied the convolutional neural network model to mammograms collected at baseline (n = 109), 12 months (n = 97), and 24 months (n = 67) and compared changes in convolutional neural network-based risk score between treatment groups. Change in convolutional neural network-based risk score was not statistically significantly different between vitamin D and placebo groups at 12 months (0.005 vs 0.002, P = .875) or at 24 months (0.020 vs 0.001, P = .563). The findings are consistent with the primary analysis of S0812, which did not demonstrate statistically significant changes in mammographic density with vitamin D supplementation compared with placebo. There is an ongoing need to evaluate biomarkers of response to novel breast cancer chemopreventive agents.

摘要

深度学习为基础的乳腺评估可以非侵入性地评估乳腺癌化学预防的反应。我们评估了应用于 SWOG S0812 中接受研究的女性的乳腺 X 光片中基于卷积神经网络的乳腺癌风险模型的变化,该研究随机分配 208 名绝经前高危女性接受每周口服维生素 D3 20000IU 或安慰剂治疗 12 个月。我们将卷积神经网络模型应用于基线(n=109)、12 个月(n=97)和 24 个月(n=67)收集的乳腺 X 光片中,并比较了治疗组之间基于卷积神经网络的风险评分的变化。在 12 个月(0.005 对 0.002,P=0.875)或 24 个月(0.020 对 0.001,P=0.563)时,维生素 D 和安慰剂组之间基于卷积神经网络的风险评分的变化没有统计学意义上的差异。这些发现与 S0812 的主要分析一致,即与安慰剂相比,维生素 D 补充剂并未显示乳腺密度有统计学意义上的变化。目前需要评估新型乳腺癌化学预防药物反应的生物标志物。

相似文献

3
A Randomized Double-Blind Placebo-Controlled Trial of the Effect of Vitamin D Supplementation on Breast Density in Premenopausal Women.
Cancer Epidemiol Biomarkers Prev. 2017 Aug;26(8):1233-1241. doi: 10.1158/1055-9965.EPI-17-0249. Epub 2017 May 17.
4
The Influence of Vitamin D on Mammographic Density: Results from CALGB 70806 (Alliance) a Randomized Clinical Trial.
Cancer Prev Res (Phila). 2021 Jul;14(7):753-762. doi: 10.1158/1940-6207.CAPR-20-0581. Epub 2021 Apr 13.
5
Dynamic Changes of Convolutional Neural Network-based Mammographic Breast Cancer Risk Score Among Women Undergoing Chemoprevention Treatment.
Clin Breast Cancer. 2021 Aug;21(4):e312-e318. doi: 10.1016/j.clbc.2020.11.007. Epub 2020 Nov 17.
7
Vitamin D and calcium supplementation and one-year change in mammographic density in the women's health initiative calcium and vitamin D trial.
Cancer Epidemiol Biomarkers Prev. 2012 Mar;21(3):462-73. doi: 10.1158/1055-9965.EPI-11-1009. Epub 2012 Jan 17.
8
Increased vitamin D and calcium intake associated with reduced mammographic breast density among premenopausal women.
Nutr Res. 2015 Oct;35(10):851-857. doi: 10.1016/j.nutres.2015.07.004. Epub 2015 Jul 31.
9
Vitamin D and calcium intakes from food or supplements and mammographic breast density.
Cancer Epidemiol Biomarkers Prev. 2005 Jul;14(7):1653-9. doi: 10.1158/1055-9965.EPI-05-0068.

引用本文的文献

2
The Promise of Artificial Intelligence in Peyronie's Disease.
Curr Urol Rep. 2024 Sep 21;26(1):3. doi: 10.1007/s11934-024-01233-5.

本文引用的文献

1
Breast cancer risk prediction combining a convolutional neural network-based mammographic evaluation with clinical factors.
Breast Cancer Res Treat. 2023 Jul;200(2):237-245. doi: 10.1007/s10549-023-06966-4. Epub 2023 May 20.
2
Dynamic Changes of Convolutional Neural Network-based Mammographic Breast Cancer Risk Score Among Women Undergoing Chemoprevention Treatment.
Clin Breast Cancer. 2021 Aug;21(4):e312-e318. doi: 10.1016/j.clbc.2020.11.007. Epub 2020 Nov 17.
3
Adjuvant Therapy and Mammographic Density Changes in Women With Breast Cancer.
JNCI Cancer Spectr. 2019 Jan 29;2(4):pky071. doi: 10.1093/jncics/pky071. eCollection 2018 Oct.
5
Chemoprevention Uptake for Breast Cancer Risk Reduction Varies by Risk Factor.
Ann Surg Oncol. 2019 Jul;26(7):2127-2135. doi: 10.1245/s10434-019-07236-8. Epub 2019 Feb 27.
6
Convolutional Neural Network Based Breast Cancer Risk Stratification Using a Mammographic Dataset.
Acad Radiol. 2019 Apr;26(4):544-549. doi: 10.1016/j.acra.2018.06.020. Epub 2018 Jul 31.
8
Tamoxifen for prevention of breast cancer: extended long-term follow-up of the IBIS-I breast cancer prevention trial.
Lancet Oncol. 2015 Jan;16(1):67-75. doi: 10.1016/S1470-2045(14)71171-4. Epub 2014 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验