Suppr超能文献

基于卷积神经网络的乳腺癌风险评分在接受化学预防治疗的女性中的动态变化。

Dynamic Changes of Convolutional Neural Network-based Mammographic Breast Cancer Risk Score Among Women Undergoing Chemoprevention Treatment.

机构信息

Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX.

Department of Radiology, New York-Presbyterian/Columbia University Medical Center, New York, NY.

出版信息

Clin Breast Cancer. 2021 Aug;21(4):e312-e318. doi: 10.1016/j.clbc.2020.11.007. Epub 2020 Nov 17.

Abstract

INTRODUCTION

We investigated whether our convolutional neural network (CNN)-based breast cancer risk model is modifiable by testing it on women who had undergone risk-reducing chemoprevention treatment.

MATERIALS AND METHODS

We conducted a retrospective cohort study of patients diagnosed with atypical hyperplasia, lobular carcinoma in situ, or ductal carcinoma in situ at our institution from 2007 to 2015. The clinical characteristics, chemoprevention use, and mammography images were extracted from the electronic health records. We classified two groups according to chemoprevention use. Mammograms were performed at baseline and subsequent follow-up evaluations for input to our CNN risk model. The 2 chemoprevention groups were compared for the risk score change from baseline to follow-up. The change categories included stayed high risk, stayed low risk, increased from low to high risk, and decreased from high to low risk. Unordered polytomous regression models were used for statistical analysis, with P < .05 considered statistically significant.

RESULTS

Of 541 patients, 184 (34%) had undergone chemoprevention treatment (group 1) and 357 (66%) had not (group 2). Using our CNN breast cancer risk score, significantly more women in group 1 had shown a decrease in breast cancer risk compared with group 2 (33.7% vs. 22.9%; P < .01). Significantly fewer women in group 1 had an increase in breast cancer risk compared with group 2 (11.4% vs. 20.2%; P < .01). On multivariate analysis, an increase in breast cancer risk predicted by our model correlated negatively with the use of chemoprevention treatment (P = .02).

CONCLUSIONS

Our CNN-based breast cancer risk score is modifiable with potential utility in assessing the efficacy of known chemoprevention agents and testing new chemoprevention strategies.

摘要

简介

我们通过在接受乳腺癌风险降低化学预防治疗的女性中测试我们的基于卷积神经网络(CNN)的乳腺癌风险模型,研究了该模型是否可修改。

材料和方法

我们对 2007 年至 2015 年在我们机构诊断为非典型性增生、小叶原位癌或导管原位癌的患者进行了回顾性队列研究。从电子健康记录中提取了临床特征、化学预防使用情况和乳房 X 线照片。我们根据化学预防使用情况将两组患者进行分类。对基线和随后的随访评估中的乳房 X 线照片进行了输入,以输入我们的 CNN 风险模型。比较了 2 个化学预防组从基线到随访的风险评分变化。变化类别包括保持高风险、保持低风险、从低风险增加至高风险以及从高风险降低至低风险。使用无序多项回归模型进行统计分析,P 值<.05 认为具有统计学意义。

结果

在 541 名患者中,有 184 名(34%)接受了化学预防治疗(组 1),357 名(66%)未接受化学预防治疗(组 2)。使用我们的 CNN 乳腺癌风险评分,与组 2 相比,组 1 中显示乳腺癌风险降低的女性明显更多(33.7%比 22.9%;P<.01)。与组 2 相比,组 1 中乳腺癌风险增加的女性明显更少(11.4%比 20.2%;P<.01)。多变量分析显示,模型预测的乳腺癌风险增加与化学预防治疗的使用呈负相关(P=0.02)。

结论

我们的基于 CNN 的乳腺癌风险评分是可修改的,可能有助于评估已知化学预防药物的疗效,并测试新的化学预防策略。

相似文献

引用本文的文献

8
Deep learning in breast imaging.乳腺成像中的深度学习
BJR Open. 2022 May 13;4(1):20210060. doi: 10.1259/bjro.20210060. eCollection 2022.

本文引用的文献

1
Harnessing the Power of Deep Learning to Assess Breast Cancer Risk.利用深度学习的力量评估乳腺癌风险。
Radiology. 2020 Feb;294(2):273-274. doi: 10.1148/radiol.2019192471. Epub 2019 Dec 17.
7
An overview of mammographic density and its association with breast cancer.乳腺密度概述及其与乳腺癌的关系。
Breast Cancer. 2018 May;25(3):259-267. doi: 10.1007/s12282-018-0857-5. Epub 2018 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验