Department of Mathematics, University of the Punjab, Lahore, Pakistan.
Department of Mathematics, King Abdulaziz University Jeddah, Saudi Arabia.
PLoS One. 2024 May 30;19(5):e0299892. doi: 10.1371/journal.pone.0299892. eCollection 2024.
In this paper, we examine q-Bernstein-Bézier surfaces in Minkowski space-[Formula: see text] with q as the shape parameter. These surfaces, a generalization of Bézier surfaces, have applications in mathematics, computer-aided geometric design, and computer graphics for the surface formation and modeling. We analyze the timelike and spacelike cases of q-Bernstein-Bézier surfaces using known boundary control points. The mean curvature and Gaussian curvature of these q-Bernstein-Bézier surfaces are computed by finding the respective fundamental coefficients. We also investigate the shape operator dependency for timelike and spacelike q-Bernstein-Bézier surfaces in Minkowski space-[Formula: see text], and provide biquadratic and bicubic q-Bernstein-Bézier surfaces as illustrative examples for different values of the shape controlling parameter q.
在本文中,我们研究了闵可夫斯基空间中的 q-Bernstein-Bézier 曲面-[公式:见正文],其中 q 是形状参数。这些曲面是 Bézier 曲面的推广,在数学、计算机辅助几何设计和计算机图形学中用于曲面的形成和建模。我们使用已知的边界控制顶点来分析 q-Bernstein-Bézier 曲面的类时和类空情况。通过找到各自的基本系数,计算了这些 q-Bernstein-Bézier 曲面的平均曲率和高斯曲率。我们还研究了闵可夫斯基空间中的类时和类空 q-Bernstein-Bézier 曲面的形状算子的依赖关系,并提供了双二次和双三次 q-Bernstein-Bézier 曲面作为不同形状控制参数 q 的示例。