Agyuz Erkan, Acikgoz Mehmet
Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, Gaziantep, Turkey.
J Inequal Appl. 2018;2018(1):81. doi: 10.1186/s13660-018-1673-3. Epub 2018 Apr 10.
Nowadays [Formula: see text]-Bernstein polynomials have been studied in many different fields such as operator theory, CAGD, and number theory. In order to obtain the fundamental properties and results of Bernstein polynomials by using [Formula: see text]-calculus, we give basic definitions and results related to [Formula: see text]-calculus. The main purpose of this study is to investigate a generating function for [Formula: see text]-Bernstein polynomials. By using an approach similar to that of Goldman et al. in (SIAM J. Discrete Math. 28(3):1009-1025, 2014), we derive some new identities, relations, and formulas for the [Formula: see text]-Bernstein polynomials. Also, we give a plot generating function of [Formula: see text]-Bernstein polynomials for some selected and values.
如今,[公式:见文本]-伯恩斯坦多项式已在许多不同领域得到研究,如算子理论、计算机辅助几何设计(CAGD)和数论。为了利用[公式:见文本]-演算获得伯恩斯坦多项式的基本性质和结果,我们给出与[公式:见文本]-演算相关的基本定义和结果。本研究的主要目的是研究[公式:见文本]-伯恩斯坦多项式的生成函数。通过使用与戈德曼等人在(《工业与应用数学学会离散数学杂志》28(3):1009 - 1025,2014)中类似的方法,我们推导出了一些关于[公式:见文本]-伯恩斯坦多项式的新恒等式、关系和公式。此外,我们给出了一些选定的[公式:见文本]和[公式:见文本]值下[公式:见文本]-伯恩斯坦多项式的绘图生成函数。