Suppr超能文献

早产儿脑室出血:未成熟神经元盐和水转运的作用。

Intraventricular haemorrhage in premature infants: the role of immature neuronal salt and water transport.

机构信息

Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.

Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Brain. 2024 Sep 3;147(9):3216-3233. doi: 10.1093/brain/awae161.

Abstract

Intraventricular haemorrhage is a common complication of premature birth. Survivors are often left with cerebral palsy, intellectual disability and/or hydrocephalus. Animal models suggest that brain tissue shrinkage, with subsequent vascular stretch and tear, is an important step in the pathophysiology, but the cause of this shrinkage is unknown. Clinical risk factors for intraventricular haemorrhage are biomarkers of hypoxic-ischaemic stress, which causes mature neurons to swell. However, immature neuronal volume might shift in the opposite direction in these conditions. This is because immature neurons express the chloride, salt and water transporter NKCC1, which subserves regulatory volume increases in non-neural cells, whereas mature neurons express KCC2, which subserves regulatory volume decreases. When hypoxic-ischaemic conditions reduce active ion transport and increase the cytoplasmic membrane permeability, the effects of these transporters are diminished. Consequentially, mature neurons swell (cytotoxic oedema), whereas immature neurons might shrink. After hypoxic-ischaemic stress, in vivo and in vitro multi-photon imaging of perinatal transgenic mice demonstrated shrinkage of viable immature neurons, bulk tissue shrinkage and blood vessel displacement. Neuronal shrinkage was correlated with age-dependent membrane salt and water transporter expression using immunohistochemistry. Shrinkage of immature neurons was prevented by prior genetic or pharmacological inhibition of NKCC1 transport. These findings open new avenues of investigation for the detection of acute brain injury by neuroimaging, in addition to prevention of neuronal shrinkage and the ensuing intraventricular haemorrhage, in premature infants.

摘要

脑室出血是早产儿的常见并发症。幸存者常伴有脑瘫、智力障碍和/或脑积水。动物模型表明,脑组织收缩,随后血管拉伸和撕裂,是病理生理学中的一个重要步骤,但这种收缩的原因尚不清楚。脑室出血的临床危险因素是缺氧缺血应激的生物标志物,这会导致成熟神经元肿胀。然而,在这些情况下,未成熟神经元的体积可能会向相反的方向移动。这是因为未成熟神经元表达氯离子、盐和水转运蛋白 NKCC1,它在非神经细胞中发挥调节体积增加的作用,而成熟神经元表达 KCC2,它在调节体积减少中发挥作用。当缺氧缺血条件下减少活性离子转运并增加细胞质膜通透性时,这些转运体的作用会减弱。结果,成熟神经元肿胀(细胞毒性水肿),而未成熟神经元可能会收缩。缺氧缺血应激后,对围产期转基因小鼠的体内和体外多光子成像显示,存活的未成熟神经元、组织整体收缩和血管移位。免疫组织化学显示,神经元收缩与年龄依赖性膜盐和水转运体表达相关。通过 NKCC1 转运的遗传或药物抑制可以预防未成熟神经元的收缩。这些发现为通过神经影像学检测急性脑损伤开辟了新的研究途径,除了预防神经元收缩和随之发生的脑室出血,这对早产儿有益。

相似文献

2
Cell-type specific distribution of chloride transporters in the rat suprachiasmatic nucleus.
Neuroscience. 2010 Feb 17;165(4):1519-37. doi: 10.1016/j.neuroscience.2009.11.040. Epub 2009 Nov 22.
3
Role of NKCC1 and KCC2 during hypoxia-induced neuronal swelling in the neonatal neocortex.
Neurobiol Dis. 2023 Mar;178:106013. doi: 10.1016/j.nbd.2023.106013. Epub 2023 Jan 25.
4
Sevoflurane-Induced Dysregulation of Cation-Chloride Cotransporters NKCC1 and KCC2 in Neonatal Mouse Brain.
Mol Neurobiol. 2020 Jan;57(1):1-10. doi: 10.1007/s12035-019-01751-1. Epub 2019 Sep 6.
6
Cervical spinal contusion alters Na-K-2Cl- and K-Cl- cation-chloride cotransporter expression in phrenic motor neurons.
Respir Physiol Neurobiol. 2019 Mar;261:15-23. doi: 10.1016/j.resp.2018.12.009. Epub 2018 Dec 24.
7
9
Opposite effect of membrane raft perturbation on transport activity of KCC2 and NKCC1.
J Neurochem. 2009 Oct;111(2):321-31. doi: 10.1111/j.1471-4159.2009.06343.x. Epub 2009 Aug 17.

引用本文的文献

1
Ongoing loss of viable neurons for weeks after mild hypoxia-ischaemia.
Brain Commun. 2025 Apr 18;7(2):fcaf153. doi: 10.1093/braincomms/fcaf153. eCollection 2025.

本文引用的文献

1
A Dynamic Balance between Neuronal Death and Clearance in an Model of Acute Brain Injury.
J Neurosci. 2023 Aug 23;43(34):6084-6107. doi: 10.1523/JNEUROSCI.0436-23.2023. Epub 2023 Aug 1.
2
Chloride transporters controlling neuronal excitability.
Physiol Rev. 2023 Apr 1;103(2):1095-1135. doi: 10.1152/physrev.00025.2021. Epub 2022 Oct 27.
3
KCC2 drives chloride microdomain formation in dendritic blebbing.
Cell Rep. 2022 Oct 25;41(4):111556. doi: 10.1016/j.celrep.2022.111556.
4
General principles of secondary active transporter function.
Biophys Rev (Melville). 2022 Mar;3(1):011307. doi: 10.1063/5.0047967. Epub 2022 Mar 29.
5
Depth-targeted intracortical microstroke by two-photon photothrombosis in rodent brain.
Neurophotonics. 2022 Apr;9(2):021910. doi: 10.1117/1.NPh.9.2.021910. Epub 2022 Mar 16.
6
Increased Donnan exclusion in charged polymer networks at high salt concentrations.
Soft Matter. 2022 Jan 5;18(2):282-292. doi: 10.1039/d1sm01511g.
7
In vitro ictogenesis is stochastic at the single neuron level.
Brain. 2022 Apr 18;145(2):531-541. doi: 10.1093/brain/awab312.
8
Unique Actions of GABA Arising from Cytoplasmic Chloride Microdomains.
J Neurosci. 2021 Jun 9;41(23):4957-4975. doi: 10.1523/JNEUROSCI.3175-20.2021. Epub 2021 Apr 26.
9
Molecular mechanisms of brain water transport.
Nat Rev Neurosci. 2021 Jun;22(6):326-344. doi: 10.1038/s41583-021-00454-8. Epub 2021 Apr 12.
10
The structural basis of function and regulation of neuronal cotransporters NKCC1 and KCC2.
Commun Biol. 2021 Feb 17;4(1):226. doi: 10.1038/s42003-021-01750-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验