Brain and Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
J Neurosci. 2011 Aug 17;31(33):11846-54. doi: 10.1523/JNEUROSCI.0286-11.2011.
Digital holographic microscopy (DHM) is a noninvasive optical imaging technique that provides quantitative phase images of living cells. In a recent study, we showed that the quantitative monitoring of the phase signal by DHM was a simple label-free method to study the effects of glutamate on neuronal optical responses (Pavillon et al., 2010). Here, we refine these observations and show that glutamate produces the following three distinct optical responses in mouse primary cortical neurons in culture, predominantly mediated by NMDA receptors: biphasic, reversible decrease (RD) and irreversible decrease (ID) responses. The shape and amplitude of the optical signal were not associated with a particular cellular phenotype but reflected the physiopathological status of neurons linked to the degree of NMDA activity. Thus, the biphasic, RD, and ID responses indicated, respectively, a low-level, a high-level, and an "excitotoxic" level of NMDA activation. Moreover, furosemide and bumetanide, two inhibitors of sodium-coupled and/or potassium-coupled chloride movement strongly modified the phase shift, suggesting an involvement of two neuronal cotransporters, NKCC1 (Na-K-Cl) and KCC2 (K-Cl) in the genesis of the optical signal. This observation is of particular interest since it shows that DHM is the first imaging technique able to monitor dynamically and in situ the activity of these cotransporters during physiological and/or pathological neuronal conditions.
数字全息显微镜(DHM)是一种非侵入性的光学成像技术,可提供活细胞的定量相位图像。在最近的一项研究中,我们表明通过 DHM 对相位信号的定量监测是一种简单的无标记方法,可用于研究谷氨酸对神经元光响应的影响(Pavillon 等人,2010)。在这里,我们对这些观察结果进行了改进,并表明谷氨酸在培养的小鼠原代皮质神经元中产生了以下三种不同的光反应,主要由 NMDA 受体介导:双相、可逆性降低(RD)和不可逆性降低(ID)反应。光信号的形状和幅度与特定的细胞表型无关,但反映了与 NMDA 活性程度相关的神经元的生理病理状态。因此,双相、RD 和 ID 反应分别表示 NMDA 激活的低水平、高水平和“兴奋性毒性”水平。此外,两种抑制钠偶联和/或钾偶联氯离子转运的抑制剂呋塞米和布美他尼强烈改变了相移,表明两种神经元共转运蛋白 NKCC1(Na-K-Cl)和 KCC2(K-Cl)参与了光信号的产生。这一观察结果特别有趣,因为它表明 DHM 是第一种能够在生理和/或病理神经元条件下动态原位监测这些共转运蛋白活性的成像技术。