Suppr超能文献

通过预测受扰动基因表达谱的染色质可及性变化来识别药物反应性增强子。

Identification of drug responsive enhancers by predicting chromatin accessibility change from perturbed gene expression profiles.

机构信息

State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.

CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China.

出版信息

NPJ Syst Biol Appl. 2024 May 30;10(1):62. doi: 10.1038/s41540-024-00388-8.

Abstract

Individual may response to drug treatment differently due to their genetic variants located in enhancers. These variants can alter transcription factor's (TF) binding strength, affect enhancer's chromatin activity or interaction, and eventually change expression level of downstream gene. Here, we propose a computational framework, PERD, to Predict the Enhancers Responsive to Drug. A machine learning model was trained to predict the genome-wide chromatin accessibility from transcriptome data using the paired expression and chromatin accessibility data collected from ENCODE and ROADMAP. Then the model was applied to the perturbed gene expression data from Connectivity Map (CMAP) and Cancer Drug-induced gene expression Signature DataBase (CDS-DB) and identify drug responsive enhancers with significantly altered chromatin accessibility. Furthermore, the drug responsive enhancers were related to the pharmacogenomics genome-wide association studies (PGx GWAS). Stepping on the traditional drug-associated gene signatures, PERD holds the promise to enhance the causality of drug perturbation by providing candidate regulatory element of those drug associated genes.

摘要

由于个体基因变异位于增强子中,因此可能对药物治疗有不同的反应。这些变异可以改变转录因子(TF)的结合强度,影响增强子的染色质活性或相互作用,最终改变下游基因的表达水平。在这里,我们提出了一个计算框架 PERD,用于预测对药物有反应的增强子。使用从 ENCODE 和 ROADMAP 收集的配对表达和染色质可及性数据,通过机器学习模型从转录组数据中预测全基因组染色质可及性。然后,将该模型应用于来自 Connectivity Map (CMAP) 和癌症药物诱导基因表达签名数据库 (CDS-DB) 的扰动基因表达数据,并识别染色质可及性发生显著改变的药物反应性增强子。此外,药物反应性增强子与药物基因组学全基因组关联研究 (PGx GWAS) 有关。与传统的药物相关基因特征相比,PERD 通过提供那些与药物相关的基因的候选调节元件,有望增强药物扰动的因果关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7da/11139989/82a141890396/41540_2024_388_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验