Suppr超能文献

通过GenoSTAN在127种ENCODE和表观基因组学路线图细胞类型及组织中准确识别启动子和增强子

Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types and Tissues by GenoSTAN.

作者信息

Zacher Benedikt, Michel Margaux, Schwalb Björn, Cramer Patrick, Tresch Achim, Gagneur Julien

机构信息

Gene Center and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität Munich, Germany.

Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

PLoS One. 2017 Jan 5;12(1):e0169249. doi: 10.1371/journal.pone.0169249. eCollection 2017.

Abstract

Accurate maps of promoters and enhancers are required for understanding transcriptional regulation. Promoters and enhancers are usually mapped by integration of chromatin assays charting histone modifications, DNA accessibility, and transcription factor binding. However, current algorithms are limited by unrealistic data distribution assumptions. Here we propose GenoSTAN (Genomic STate ANnotation), a hidden Markov model overcoming these limitations. We map promoters and enhancers for 127 cell types and tissues from the ENCODE and Roadmap Epigenomics projects, today's largest compendium of chromatin assays. Extensive benchmarks demonstrate that GenoSTAN generally identifies promoters and enhancers with significantly higher accuracy than previous methods. Moreover, GenoSTAN-derived promoters and enhancers showed significantly higher enrichment of complex trait-associated genetic variants than current annotations. Altogether, GenoSTAN provides an easy-to-use tool to define promoters and enhancers in any system, and our annotation of human transcriptional cis-regulatory elements constitutes a rich resource for future research in biology and medicine.

摘要

为了理解转录调控,需要准确的启动子和增强子图谱。启动子和增强子通常通过整合染色质分析来绘制,这些分析可绘制组蛋白修饰、DNA可及性和转录因子结合情况。然而,当前的算法受到不切实际的数据分布假设的限制。在这里,我们提出了GenoSTAN(基因组状态注释),这是一种克服这些限制的隐马尔可夫模型。我们为来自ENCODE和表观基因组学路线图项目的127种细胞类型和组织绘制了启动子和增强子图谱,这是当今最大的染色质分析汇编。广泛的基准测试表明,GenoSTAN通常比以前的方法以显著更高的准确性识别启动子和增强子。此外,与当前注释相比,源自GenoSTAN的启动子和增强子显示出与复杂性状相关的遗传变异的显著更高富集。总之,GenoSTAN提供了一个易于使用的工具来定义任何系统中的启动子和增强子,并且我们对人类转录顺式调控元件的注释构成了生物学和医学未来研究的丰富资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0801/5215863/16056e95f6b7/pone.0169249.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验