Li Shuo-Bin, Yin Peng, Xu Cong, Xue Kun-Ze, Kong Yuan, Zuo Ming, Zhang Wan-Qun, Liang Hai-Wei
Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
Small. 2024 Oct;20(40):e2401134. doi: 10.1002/smll.202401134. Epub 2024 May 30.
Strain engineering has been widely used to optimize platinum-based oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs). PtM (M is base metals), a well-known high-compressive-strain intermetallic alloy, shows promise as a low platinum ORR catalyst due to high intrinsic activity. However, during the alloying of Pt with a threefold amount of M, a notable phase separation between Pt and M may occur, with M particles rapidly sintering while Pt particles grow slowly, posing a challenge in achieving a well-defined PtM intermetallic alloy. Here, an entropy-driven Ostwald ripening reversal phenomenon is discovered that enables the synthesis of small-sized Pt(FeCoNiCu) intermetallic ORR catalysts. High entropy promotes the thermodynamic driving force for the alloying Pt with M, which triggers the Ostwald ripening reversal of sintered FeCoNiCu particles and facilitates the formation of uniform Pt(FeCoNiCu) intermetallic catalysts. The prepared Pt(FeCoNiCu) catalysts exhibit a high specific activity of 3.82 mA cm, along with a power density of ≈1.3 W cm at 0.67 V and 94 °C with a cathode Pt loading of 0.1 mg cm in H-air fuel cell.
应变工程已被广泛用于优化质子交换膜燃料电池(PEMFC)的铂基氧还原反应(ORR)催化剂。PtM(M为贱金属)是一种著名的具有高压缩应变的金属间合金,由于其高本征活性,有望成为一种低铂ORR催化剂。然而,在将Pt与三倍量的M合金化过程中,Pt和M之间可能会出现明显的相分离,M颗粒迅速烧结而Pt颗粒生长缓慢,这给制备明确的PtM金属间合金带来了挑战。在此,发现了一种熵驱动的奥斯特瓦尔德熟化逆转现象,该现象能够合成小尺寸的Pt(FeCoNiCu)金属间ORR催化剂。高熵促进了Pt与M合金化的热力学驱动力,触发了烧结的FeCoNiCu颗粒的奥斯特瓦尔德熟化逆转,并促进了均匀的Pt(FeCoNiCu)金属间催化剂的形成。所制备的Pt(FeCoNiCu)催化剂在H-空气燃料电池中,在阴极Pt负载为0.1 mg/cm²、0.67 V和94°C的条件下,表现出3.82 mA/cm²的高比活性以及约1.3 W/cm²的功率密度。