Suppr超能文献

机器学习辅助发现用于电化学氧还原反应的低铂高熵金属间化合物

Machine Learning-Aided Discovery of Low-Pt High Entropy Intermetallic Compounds for Electrochemical Oxygen Reduction Reaction.

作者信息

Zhang Longhai, Zhang Xu, Chen Changsheng, Zhang Jiaxi, Tan Weiquan, Xu Zhihang, Zhong Ziying, Du Li, Song Huiyu, Liao Shijun, Zhu Ye, Zhou Zhen, Cui Zhiming

机构信息

Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.

Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.

出版信息

Angew Chem Int Ed Engl. 2024 Dec 16;63(51):e202411123. doi: 10.1002/anie.202411123. Epub 2024 Nov 9.

Abstract

Advancing the design of cathode catalysts to significantly maximize platinum utilization and augment the longevity has emerged as a formidable challenge in the field of fuel cells. Herein, we rationally design a high entropy intermetallic compound (HEIC, Pt(FeCoNiCu)) for catalyzing oxygen reduction reaction (ORR) by an efficient machine learning stategy, where crystal graph convolutional neural networks are employed to expedite the multicomponent design. Based on a dataset generated from first-principles calculations, the model can achieve a high prediction accuracy with mean absolute errors of 0.003 for surface strain and 0.011 eV atom for formation energy. In addition, we identify two chemical features (atomic size difference and mixing enthalpy) as new descriptors to explore advanced ORR catalysts. The carbon supported Pt(FeCoNiCu) catalyst with small particle size is successfully synthesized by a freeze-drying-annealing technology, and exhibits ultrahigh mass activity (4.09 A mg ) and specific activity (7.92 mA cm). Meanwhile, The catalyst also shows significantly enhanced electrochemical stability which can be ascribed to the sluggish diffussion effect in the HEIC structure. Beyond offering a promising low-Pt electrocatalysts for fuel cell cathode, this work offers a new paradigm to rationally design advanced catalysts for energy storage and conversion devices.

摘要

改进阴极催化剂的设计以显著提高铂的利用率并延长其使用寿命,已成为燃料电池领域一项艰巨的挑战。在此,我们通过一种高效的机器学习策略合理设计了一种用于催化氧还原反应(ORR)的高熵金属间化合物(HEIC,Pt(FeCoNiCu)),其中采用晶体图卷积神经网络来加速多组分设计。基于第一性原理计算生成的数据集,该模型能够实现较高的预测精度,表面应变的平均绝对误差为0.003,形成能的平均绝对误差为0.011 eV/原子。此外,我们确定了两个化学特征(原子尺寸差和混合焓)作为探索先进ORR催化剂的新描述符。通过冷冻干燥 - 退火技术成功合成了小粒径的碳载Pt(FeCoNiCu)催化剂,其表现出超高的质量活性(4.09 A mg)和比活性(7.92 mA cm)。同时,该催化剂还表现出显著增强的电化学稳定性,这可归因于HEIC结构中的迟缓扩散效应。这项工作不仅为燃料电池阴极提供了一种有前景的低铂电催化剂,还为合理设计用于能量存储和转换装置的先进催化剂提供了一种新范式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验